[image: First Edition]
Data Push Apps with HTML5 SSE

Darren Cook

Preface

The modern Web is a demanding place. You have to look good. You have
 to load fast. And you have to have good, relevant, interesting, up-to-date
 content. This book is about a technology to help with the second and third
 of those: making sure people using your website or web application are
 getting content that is bang up-to-date. Minimal latency, no
 compromises.
This is also a book that cares about practical, real-world
 applications. Sure, Chapter 2 is based around a toy
 example, as are the introductory examples in Chapters 6 and 7. But the rest of the
 book is based around complete applications that don’t shy away from the
 prickly echidnas that occupy the corner cases the real world will throw at
 us.
The Kind of Person You Need to Be

You need to be strong yet polite, passionate yet objective, and nice
 to children, the elderly, and Internet cats alike. However, this book is
 less demanding than real life. I’m going to assume you know your HTML
 (HyperText Markup Language) from your HTTP (HyperText Transport Protocol),
 and that you also know the difference between HTML, CSS (Cascading Style
 Sheets), and JavaScript. To understand the client-side code you should at
 least be able to read and understand basic JavaScript. (When more complex
 JavaScript is used, it will be explained in a sidebar or appendix.)
On the server side, the book has been kept as language-neutral as
 possible. Most code is introduced with simple PHP code, because PHP is
 quite short and expressive for this kind of application. As long as you
 know any C-like language you will have no trouble following along, but if
 you get stuck, please see Appendix C, which
 introduces some aspects of the PHP language. Chapter 2
 also shows the example in Node.js. In later chapters, if the code gets a
 bit PHP-specific, I also show you how to do it in some other
 languages.
Finally, to follow along with the examples it is assumed you have a
 web server such as Apache installed on your development machine. On many
 Linux systems it is already there, or very simple to install. For
 instance, on Ubuntu, sudo apt-get install lamp-server will
 install Apache, PHP, and MySQL in one easy step. On Windows, XAMPP is
 a similar all-in-one package that will give you everything you need. There
 is also a Mac
 version.

Organization of This Book

The core elements of SSE are not that complex: Chapter 2 shows a fully working example (both frontend and
 backend) in just a few pages. Before that, Chapter 1
 will give some background on HTML5, data push, potential applications, and
 alternative technologies.
From Chapter 3 through Chapter 7
 we build a complete application, trying to be as realistic as possible
 while also trying really hard not to bore you with irrelevant detail. The
 domain of this application is financial data. Chapter 3
 is the core application. Chapter 4 refactors and expands
 on it. Chapter 5 deals with the awkward details that
 turn up when we try to make a data push application, things like complex
 data, data sources going quiet, and sockets dying on us. Chapter 6 introduces one way (long-polling) to get our
 application working on desktop and mobile browsers that are not yet
 supporting SSE, and then Chapter 7 shows two other ways
 that are superior but not available on all browsers. Chapter 3 also spends some time developing realistic,
 repeatable data that our sample application can push. Though not directly
 about SSE, it is a very useful demonstration of designing for testability
 in data push applications.
Chapter 8 covers some elements of the SSE protocol
 that we chose not to use in the realistic application that was built up in
 the other chapters. And, yes, the reasons why they were not used is also
 given. That leads into Chapter 9, where all the security
 issues (cookies, authorization, CORS) that were glossed over in earlier
 chapters are finally covered.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This element signifies a tip or suggestion.

Note
This element signifies a general note.

Caution
This element indicates a warning or caution.

Using Code Examples

The source files used and referred to in the book are available for
 download at https://github.com/DarrenCook/ssebook.
This book is here to help you get your job done. In general, if
 example code is offered with this book, you may use it in your programs
 and documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example, writing
 a program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Data Push Apps with HTML5 SSE by Darren Cook
 (O’Reilly). Copyright 2014 Darren Cook, 978-1-449-37193-7.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://oreil.ly/data-push-apps-html5-sse.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. All About SSE...And Then Some

SSE stands for Server-Sent Events and it is an HTML5 technology to allow
 the server to push fresh data to clients. It is a
 superior solution to having the client poll for new data every few seconds.
 At the time of writing it is supported natively by 65% of desktop and mobile
 browsers, but in this book I will show how to develop fallback solutions
 that allow us to support more than 99% of desktop and mobile users. By the
 way, 10 years ago I used Flash exclusively for this kind of data push;
 things have evolved such that nothing in this book uses Flash.
Note
The browser percentages in this book come from the wonderful “Can I
 Use…” website. It, in turn, gets its numbers from StatCounter
 GlobalStats. And, to preempt the pedants, when I say “more than
 99%” I really mean “it works on every desktop or mobile browser I’ve been
 able to lay my hands on.” Please forgive me if that doesn’t turn out to be
 exactly 99% of your users.

For users with JavaScript disabled, there is no hope: neither SSE nor our clever fallback solutions will
 work. However, because being told “impossible” annoys me as much as it
 annoys you, I will show you a way to give even these users a dynamic update
 (see What If JavaScript Is Disabled?).
The rest of this chapter will describe what HTML5 and data push are,
 discuss some potential applications, and spend some time comparing SSE to
 WebSockets, and comparing both of those to not using data push at all. If
 you already have a rough idea what data push is, I’ll understand if you want
 to jump ahead to the code examples in Chapter 2, and come
 back here later.
HTML5

I introduced SSE as an HTML5 technology
 earlier. In the modern Web, HTML is used to specify the
 structure and content of your web page or application, CSS is used to
 describe how it should look, and JavaScript is used to make it dynamic and
 interactive.
Note
JavaScript is for actions, CSS is for appearance; notice that HTML is for
 both structure and content. Two things. First,
 the logical organization (the “DOM”); second, the data itself.
 Typically when the data needs to be updated, the structure does not.
 It is this desire to change the content, without changing the
 structure, that drove the creation of data pull and data push
 technologies.

HTML was invented by Tim Berners-Lee, in about 1990. There was never a formally
 released HTML 1.0 standard, but HTML 2.0 was published at the end of 1995.
 At that time, people talked of Internet Years as being in terms of months,
 because the technology was evolving very quickly. HTML 2.0 was augmented
 with tables, image uploads, and image maps. They became the basis of HTML
 3.2, which was released in January 1997. Then by December 1997 we had HTML
 4.0. Sure, there were some tweaks, and there was XHTML, but basically that
 is the HTML you are using today—unless you are using HTML5.
Most of what HTML5 adds is optional: you can mostly use the HTML4
 you know and then pick and choose the HTML5 features you want. There are a
 few new elements (including direct support for video, audio, and both
 vector and bitmap drawing) and some new form controls, and a few things
 that were deprecated in HTML4 have now been removed. But of more
 significance for us is that there are a whole bunch of new JavaScript
 APIs, one of which is Server-Sent Events. For more on HTML5 generally, the
 Wikipedia entry is
 as good a place to start as any.
The orthogonality of the HTML5 additions means that although all the
 code in this book is HTML5 (as shown by the <!doctype
 html> first line), just about everything not directly to do with
 SSE will be the HTML4 you are used to; none of the new HTML5 tags are
 used.

Data Push

Server-Sent Events (SSE) is an HTML5 technology that allows the server to push fresh
 data to clients (commonly called data
 push). So, just what is data push, and how does it differ from
 anything else you may have used? Let me answer that by first saying what
 it is not. There are two alternatives to data push: no-updates and data
 pull.
The first is the simplest of all: no-updates (shown in Figure 1-1). This
 is the way almost every bit of content on the Web works.
[image: Alternative: no-updates]

Figure 1-1. Alternative: no-updates

You type in a URL, and you get back an HTML page. The browser then
 requests the images, CSS files, JavaScript files, etc. Each is a static
 file that the browser is able to cache. Even if you are using a backend
 language, such as PHP, Ruby, Python, or any of the other dozens of choices
 to dynamically generate the HTML for the user, as far
 as the browser is concerned the HTML file it receives is no different from
 a handmade static HTML file. (Yes, I know you can tell the browser not to
 cache the content, but that is missing the point. It is still static.)
The other alternative is data pull (shown in Figure 1-2).
[image: Alternative: data pull (regular polling)]

Figure 1-2. Alternative: data pull (regular polling)

Based on some user action, or after a certain amount of time, or
 some other trigger, the browser makes a request to the server to get an
 up-to-date version of some, or all, of its data. In the crudest approach,
 either JavaScript or a meta tag (see What If JavaScript Is Disabled?) tells the whole HTML page to
 reload. For that to make sense, either the page is one of those made
 dynamically by a server-side language, or it is static HTML that is being
 regularly updated.
In more sophisticated cases, Ajax techniques are used to just
 request fresh data, and when the data is received a JavaScript function
 will use it to update part of the DOM. There is a very
 important concept here: only fresh data is requested, not all the
 structure on the HTML page. This is really what we mean by data pull:
 pulling in just the new data, and updating just the affected parts of our
 web page.
Note
Jargon alert. Ajax? DOM?
Ajax is introduced in Chapter 6, when we use
 it for browsers that don’t have native SSE support. I won’t tell you
 what it stands for, because it would only confuse you. After
 all, it doesn’t have to be asynchronous, and it doesn’t have to use
 XML. It is hard to argue with the J in Ajax, though. You definitely
 need JavaScript.
DOM? Document Object Model. This is the data structure that represents the current web page. If
 you’ve written document.getElementById('x').... in
 JavaScript, or $('#x').... in JQuery, you’ve been using
 the DOM.

That is what data push isn’t. It is not static files. And it is not
 a request made by the browser for the latest data. Data push is where the
 server chooses to send new data to the clients (see
 Figure 1-3).
[image: Data push]

Figure 1-3. Data push

When the data source has new data, it can send it to the client(s)
 immediately, without having to wait for them to ask for it. This new data
 could be breaking news, the latest stock market prices, a chat message
 from another online friend, a new weather forecast, the next move in a
 strategy game, etc.
The functionality of data pull and data push is
 the same: the user gets to see new data. But data push has some
 advantages. Perhaps the biggest advantage is lower latency. Assuming a
 packet takes 100ms to travel between server and client, and the data pull
 client is polling every 10 seconds, with data push the client gets to see
 the data 100ms after the server has it. With data pull, the client gets to
 see the data between 100ms and 10100ms (average 5100ms) after the server
 has it; everything depends on the timing of the poll request. On average,
 the data pull latency is 51 times worse. If the data pull method polls
 every 2 seconds, the average comes down to 1100ms, which is merely 11
 times worse. However, if no new data were available, that would result in
 more wasted requests and more wasted resources (bandwidth, CPU cycles,
 etc.).
That is the balancing act that will always be frustrating you with
 data pull: to improve latency you have to poll more often; to save
 bandwidth and connection overhead you have to poll less often. Which is
 more important to you—latency or bandwidth? When you answer “both,” that
 is when you need a data push technology.

Other Names for Data Push

The need for data push is as old as the Web,[1] and over the years people have found many novel solutions,
 most of them with undesirable compromises. You may have heard of some
 other technologies—Comet, Ajax Push, Reverse Ajax, HTTP Streaming—and be
 wondering what the difference is between them. These are all talking about
 the same thing: the fallback techniques we will study in Chapters 6 and 7. SSE was added as an
 HTML5 technology to have something that is both easy to use and efficient.
 If your browser supports it, SSE is always[2] superior to the Comet technologies. (Later in this chapter
 is a discussion of how SSE and WebSockets differ.)
By the way, you will sometimes see SSE referred to as
 EventSource, because that is the name of the related object in JavaScript. I will
 call it SSE everywhere in this book, and I will only use
 EventSource to refer to the JavaScript object.

Potential Applications

What is SSE good for? SSE excels when you need to update part of a web application
 with fresh data, without requiring any action on the part of the user. The
 central example application we will use to explore how to implement data
 push and SSE is pushing foreign exchange (FX) prices. Our goal is that each time the
 EUR/USD (Euro versus US Dollar) exchange rate changes at our broker, the
 new price will appear in the browser, as close to
 immediately as physically possible.
This fits the SSE protocol perfectly: the updates are frequent and
 low latency is important, and they are all flowing from the server to the
 client (the client never needs to send prices back). Our example backend
 will fabricate the price data, but it should be obvious how to use it to
 distribute real data, FX or otherwise.
With only a drop of imagination you should be able to see how this
 example can apply to other domains. Pushing the latest bids in an auction
 web application. Pushing new reviews to a book-seller website. Pushing new
 high scores in an online game. Pushing new tweets or news articles for
 keywords you are interested in. Pushing the latest temperatures in the
 core of that Kickstarter-financed nuclear fusion reactor you have been
 building in your back garden.
Another application would be sending alerts. This might be part of a
 social network like Facebook, where a new message causes a pop up to
 appear and then fade away. Or it might be part of the interface for an
 email service like Gmail, where it inserts a new entry in your inbox each
 time new mail arrives. Or it could be connected to a calendar, and give
 you notice of an upcoming meeting. Or it could warn you of your disk usage
 getting high on one of your servers. You get the idea.
What about chat applications? Chat has two parts: receiving the
 messages of others in the chat room (as well as other activities, such as
 members entering or leaving the chat room, profile changes, etc.), and
 then posting your messages. This two-way communication is usually a
 perfect match for WebSockets (which we will take a proper look at in a moment), but it
 does not mean it is not also a good fit for SSE. The way you handle the
 second part, posting your messages, is with a good old-fashioned Ajax
 request.
As an example of the kind of “chat” application to which SSE is well-suited, it can be
 used to stream in the tweets you are interested in, while a separate
 connection is used for you to write your own tweets. Or imagine an online
 game: new scores are distributed to all players by SSE, and you just need
 a way to send each player’s new score to the server at the end of their
 game. Or consider a multiplayer real-time strategy game: the current board
 position is constantly being updated and is distributed to all players
 using SSE, and you use the Ajax channel when you need to send a player’s
 move to the central server.

Comparison with WebSockets

You may have heard of another HTML5 technology called WebSockets, which can also
 be used to push data from server to client. How do you decide if you
 should be using SSE or WebSockets? The executive summary goes like this:
 anything you can do with WebSockets can be done with SSE, and vice versa,
 but each is better suited to certain tasks.
WebSockets is a more complicated technology to implement server
 side, but it is a real two-way socket, which means the server can push
 data to the client and the client can push data back to the server.
Browser support for WebSockets is roughly the same as SSE: most
 major desktop browsers support both.[3] The native browser for Android 4.3 and earlier supports
 neither, but Firefox for Android and Chrome for Android have full
 support. Android 4.4 supports both. Safari has had SSE support since 5.0 (since 4.0 on iOS), but
 has only supported WebSockets properly since Safari 6.0 (older versions
 supported an older version of the protocol that had security problems, so
 it ended up being disabled by the browsers).
SSE has a few notable advantages over WebSockets. For me the biggest
 of those is convenience: you don’t need any new components—just carry on
 using whatever backend language and frameworks you are already used to.
 You don’t need to dedicate a new virtual machine, a new IP, or a new port
 to it. It can be added just as easily as adding another page to an
 existing website. I like to think of this as the existing
 infrastructure advantage.
The second advantage is server-side simplicity. As we will see in
 Chapter 2, the backend code is literally just a few
 lines. In contrast, the WebSockets protocol is
 complicated and you would never think to tackle it
 without a helper library. (I did; it hurt.)
Because SSE works over the existing HTTP/HTTPS protocols, it works
 with existing proxy servers and existing authentication techniques; proxy
 servers need to be made WebSocket aware, and at the time of writing many
 are not (though this situation will improve). This also ties into another
 advantage: SSE is a text protocol and you can debug your scripts very
 easily. In fact, in this book we will use curl and will even
 run our backend scripts directly at the command line when testing and
 developing.
But that leads us directly into a potential advantage of WebSocket
 over SSE: it is a binary protocol, whereas SSE uses UTF-8. Sure, you could
 send binary data over the SSE connection: the only characters with special
 meaning in SSE are CR and LF, and those are easy to escape. But binary
 data is going to be bigger when sent over SSE. If you
 are sending large amounts of binary data from server to client, WebSockets
 is the better choice.
Binary Data Versus Binary Files
If you want to send large binary files over either
 WebSockets or SSE, stop and think if that is what you should be doing.
 Wouldn’t using good old HTTP for that be better? It will save you from
 having to reinvent all kinds of wheels (authorization, encryption,
 proxies, caching, keep-alive). And, if your concern is efficient use of
 socket connections, take a good look at HTTP/2.0.[4]
When I talk about “large amounts of binary data” I mean when you
 need to implement binary Internet protocols, such as SSH, inside a
 browser. If all you want to do is push a new banner ad to a user, the
 best way is to send just the URL over SSE (or WebSockets), and then have
 the browser use good old HTTP to fetch it.

But the biggest advantage of WebSockets over SSE is that it is
 two-way communication. That means it is just as easy to send data
 to the server as to receive data
 from the server. When using SSE, the way we normally
 pass data from client to server is using a separate Ajax request. Relative
 to WebSockets, using Ajax in this way adds overhead. However, it only adds
 a bit of overhead,[5] so the question becomes: when does it start to matter? If
 you need to pass data to the server once/second or even more frequently,
 you should be using WebSockets. Once every one to five seconds and you are
 in a gray area; it is unlikely to matter whether you go with WebSockets or
 SSE, but if you are expecting heavy load it is worth benchmarking. Less
 frequently than once every five or so seconds and you won’t notice the
 difference.
What of performance for passing data from the server to the client?
 Well, assuming it is textual data, not binary (as mentioned previously),
 there is no difference between SSE and WebSockets. They are both are using
 a TCP/IP socket, and both are lightweight protocols. No difference in
 latency, bandwidth, or server load…except when there is. Eh? What does
 that mean?
The difference applies when you are enjoying the existing
 infrastructure advantage of SSE, and have a web server sitting
 between your client and your server script. Each SSE connection is not
 just using a socket, but it is also using up a thread or process in
 Apache. If you are using PHP, it is starting a new PHP instance especially
 for the connection. Apache and PHP will be using a chunk of memory, and
 that limits the number of simultaneous connections you can support. So, to
 get the exact same data push performance for SSE as you get for
 WebSockets, you have to write your own backend server. Of course, those of
 you using Node.js will be using your own web server anyway, and wonder
 what the fuss is about. We take a look at using Node.js to do just that,
 in Chapter 2.
A word on WebSocket fallbacks for older browsers. At the moment just
 over two-thirds of browsers can use these new technologies; on mobile it
 is a lower percentage. Traditionally, when a two-way socket was needed,
 Flash was used, and polyfill of WebSockets is often done with Flash. That
 is complicated enough, but when Flash is not available it is even worse.
 In simple terms: WebSocket fallbacks are hard, SSE fallbacks are
 easier.

When Data Push Is the Wrong Choice

Most of what I will talk about in this section applies equally well to both the HTML5
 data push technologies (SSE and WebSockets) and the fallback solutions we
 will look at in Chapters 6 and 7; the thing they have in common is that
 they keep a dedicated socket open for each connected client.
First let us consider the static situation, with no data push
 involved. Each time users open a web page, a socket connection is opened
 between their browser and your server. Your server gathers the information
 to send back to them, which may be as simple as loading a static HTML file
 or an image from disk, or as complex as running a server-side language
 that makes multiple database connections, compiles CoffeeScript to
 JavaScript, and combines it all together (using a server-side template) to
 send back. The point being that once it has sent back the requested
 information, the socket is then closed.[6] Each HTTP request opens one of these relatively short-lived
 socket connections. These sockets are a limited resource on your machine,
 but as each one completes its task, it gets thrown back in the pile to be
 recycled. It is really very eco-friendly; I’m surprised there isn’t
 government funding for it.
Now compare that to data push. You never finish serving the request:
 you always have more information to send, so the socket is kept open
 forever. Therefore, because they are a limited resource,[7] we have a limit on the number of SSE users you can have
 connected at any one time.
You could think of it this way. You are offering telephone support
 for your latest application, and you have 10 dedicated call center staff,
 servicing 1,000 customers. When a customer hits a problem he calls the
 support number, one of the staff answers, helps him with the problem, then
 hangs up. At quiet times some of your 10 staff are not answering calls. At
 other times, all 10 are busy and new callers get put into a queue until a
 staff member is freed up. This matches the typical web server
 model.
But now imagine you have a customer call and say: “I don’t have a
 problem at the moment, but I’m going to be using your software for the
 next few hours, and if I have a problem I want to get an immediate answer,
 and not risk being put on hold. So could you just stay on the line,
 please?” If you offer this service, and the customer has no questions,
 you’ve wasted 10% of your call center capacity for the duration of those
 few hours. If 10 customers did this, the other 990 customers are
 effectively shut out. This is the data push model.
But it is not always a bad thing. Consider if that user had one
 question every few seconds for the whole afternoon. By keeping the line
 open you have not wasted 10% of your call capacity, but actually increased
 it! If he had to make a fresh call (data pull) for each of those
 questions, think of the time spent answering, identifying the customer,
 bringing up his account, and even the time spent with a polite good-bye at
 the end. There is also the inefficiency involved if he gets a different
 staff member each time he calls, and they have to get up to speed each
 time. By keeping the line open you have not only made that customer
 happier, but also made your call center more efficient. This is data push
 working at its best.
The FX trading prices example, introduced earlier, suits SSE very
 well: there are going to be lots of price changes, and low latency is very
 important: a customer can only trade at the current price, not the price
 60 seconds ago. On the other hand, consider the long-range weather
 forecast. The weather bureau might release a new forecast every 30
 minutes, but most of the time it won’t change from “warm and sunny.” And
 latency is not too critical either. If we don’t hear that the forecast has
 changed from “warm and sunny” to “warm and partly cloudy” the very moment
 the weather forecasters announce it, does it really matter? Is it worth
 holding a socket open, or would straightforward polling (data pull) of the
 weather service every 30 or 60 minutes be good enough?
What about infrequent events where latency does
 matter? What if we know there will be a government announcement of
 economic growth at 8:30 a.m. and we want it shown to customers of our web
 application as soon as the figures are released? In this case we would do
 better to set a timer that does a long-poll Ajax call (see Chapter 6) that would start just a few seconds before the
 announcement is due. Holding a socket open for hours or days beforehand
 would be a waste.
A similar situation applies to predictable downtime. Going back to
 our example of receiving live FX prices, there is no point holding the
 connection open on the weekends. The connection could be closed at 5 p.m.
 (New York local time) on a Friday, and a timer set to open it again at 5
 p.m. on Sunday. If your computer infrastructure is built on top of a
 pay-as-you-go cloud, that means you can shut down some of your instances
 Friday evening, and therefore cut your costs by up to 28%! See Adding Scheduled Shutdowns/Reconnects, in Chapter 5,
 where we will do exactly that.

Decisions, Decisions…

The previous two sections discussed the pros and cons of data pull, SSE, and
 WebSockets, but how do you know which is best for you? The question is
 complex, based on the behavior of the application, business decisions
 about customer expectations for latency, business decisions about hosting
 costs, and the technology that customers and your developers are using.
 Here is a set of questions you should be asking yourself:
	How often are server-side events going to happen?
The higher this is the better data push (whether SSE or
 WebSockets) will be.

	How often are client-side events going to happen?
If such events occur less than once every five seconds, and
 especially if there is less than one event every second, WebSockets
 is going to be a better choice than SSE. If such events occur less
 than once every 5 to 10 seconds, this becomes a minor factor in the
 decision-making process.

	Are the server-side events not just fairly infrequent but also
 happening at predictable times?
When such events are less frequent than once a minute, data
 pull has the advantage that it won’t be holding open a socket. Be
 aware of the issues with lots of clients trying to all connect at
 the same time.

	How critical is latency? Put a number on it.
Is an extra half a second going to annoy people? Is an extra
 60 seconds not really going to matter?
The more that latency matters, the more that data push is a
 superior choice over data pull.

	Do you need to push binary data from server to client?
If there is a lot of binary data, WebSockets is superior to
 SSE. (It might be that XHR polling is better than SSE too.)
If the binary data is small, you can encode it for use with
 SSE, and the difference is a matter of a few bytes.

	Do you need to push binary data from client to server?
This makes no difference: both XMLHttpRequest[8] (i.e., Ajax, which is how SSE sends messages from
 client to server), and WebSockets deal with binary data.

	Are most of your users on landline or on mobile
 connections?
Notebook users who are using an LTE WiFi router, or who are
 tethering, count as mobile users. A phone that
 has a strong WiFi connection to a fiber-optic upstream connection
 counts as a landline user. It is the connection that matters, not
 the power of the computer or the size of the screen.
Be aware that mobile connections have much greater latency,
 especially if the connection needs to wake up. This makes data pull
 (polling) a worse choice on mobile connections than on landline
 connections.
Also, a WiFi connection that is overloaded (e.g., in a busy
 coffee shop) drops more and more packets, and behaves more like a
 mobile connection than a landline connection.

	Is battery life a key concern for your mobile users?
You have a compromise to make between latency and battery
 life. However, data pull (except the special case where the polling
 can be done predictably because you know when the data will appear)
 is generally going to be a worse choice than data push (SSE or
 WebSockets).

	Is the data to be pushed relatively small?
Some 3G mobile connections have a special low-power mode that
 can be used to pass small messages (200 to 1000 bps). But that is a
 minor thing. More important is that a large message will be split up
 into TCP/IP segments. If one of those segments gets lost, it has to
 be resent. TCP guarantees that data arrives in the order it was
 sent, so this lost packet will hold up the whole message from being
 processed. It will also block later messages from arriving. So, on
 noisy connections (e.g., mobile, but also an overloaded WiFi
 connection), the bigger your data messages are the more extra
 packets that will get sent.
Consider using data push as a control channel, and telling the
 browser to request the large file directly. This is very likely to
 be processed in its own socket, and therefore will not block your
 data push socket (which exists because you said latency was
 important).

	Is the data push aspect a side feature of the web application,
 or the main thing? Are you short on developer resources?
SSE is easier to work with, and works with existing
 infrastructure, such as Apache, very neatly. This cuts down testing
 time. The bigger the project, and the more developer resources you
 have, the less this matters.

Note
For more technical details on some of the subjects raised in the
 previous few sections, and especially if efficiency and dealing with
 high loads are your primary concern, I highly recommend
 High
 Performance Browser Networking, by Ilya Grigorik (O’Reilly).

Take Me to Your Code!

In brief, if you have data on your website that you’d like to be
 fresher, and are currently using Ajax polling, or page reloads, or
 thinking about using them, or thinking about using WebSockets but it seems
 rather low level, then SSE is the technology you have been looking for. So
 without further delay, let’s jump into the Hello World example of the data
 push world.

[1] If you think data push and data pull only became possible with
 Ajax (popularized in 2005), think again. Flash 6 was released in March
 2002 and its Flash Remoting technology gave us the same thing, but
 with no annoying browser differences (because just about everyone had
 Flash installed at that time).

[2] Well, okay, not always always. See When Data Push Is the Wrong Choice and Is Long-Polling Always Better Than Regular Polling?.

[3] Internet Explorer is the exception, with no native SSE support even as of IE11;
 WebSocket support was added in IE10.

[4] See http://en.wikipedia.org/wiki/HTTP_2.0,
 or check out High
 Performance Browser Networking by Ilya
 Grigorik (O’Reilly).

[5] Well, a few hundred bytes in HTTP/1.1, even more if you have
 lots of cookies or other headers being passed. In HTTP/2.0, it is much
 less.

[6] Most requests actually use HTTP persistent connection, which shares the socket between the first HTML request
 and the images; the connection is then killed after a few seconds of
 no activity (five seconds in Apache 2.2). I just mention this for the
 curious; it makes no difference to our comparison of the normal web
 versus data push solutions.

[7] How limited? It depends on your server OS, but maybe 60,000 per
 IP address. But then the firewall and/or load balancer might have a
 say. And memory on your server is a factor, too. It makes my head hurt
 trying to think about it in this way, which is why I prefer to
 benchmark the actual system you build to find its limits.

[8] Strictly, the second version of XMLHttpRequest. See http://caniuse.com/xhr2.
 IE9 and earlier and Android 2.x have no support. But none of
 those browsers support WebSockets or SSE either, so it still has
 no effect on the decision process.

Chapter 2. Super Simple Easy SSE

This chapter will introduce a simple frontend and backend that uses
 SSE to stream real-time data to a browser client from a server. I won’t get
 into some of the exotic features of SSE (those are saved for Chapters 5, 8, and 9). I also won’t try to
 make it work on older browsers that do not support SSE (see Chapters 6 and 7 for that). But, even
 so, it will work on recent versions of most of the major browsers.
Note
Any recent version of Firefox, Chrome, Safari, iOS Safari, or Opera will work. It
 won’t work on IE11 and earlier. It also won’t work on the native browser
 in Android 4.3 and earlier. To test this example on your Android phone or
 tablet, install either Chrome for Android or Firefox for Android.
 Alternatively, wait for Chapter 6 where we will
 implement long-poll as a fallback solution. For the latest list of which
 browsers support SSE natively, see http://caniuse.com/eventsource.

If you want to go ahead and try it out, put basic_sse.html and basic_sse.php in the same directory,[9] a directory that is served by Apache (or whatever web server
 you use). It can be on localhost, or a remote server. If you’ve put it on
 localhost, in a directory called sse,
 then the URL you browse to will be http://localhost/sse/basic_sse.html. You should
 see a timestamp appearing once per second, and it will soon fill the
 screen.
Minimal Example: The Frontend

I will take this first example really slowly, in case you need an HTML5 or JavaScript refresher.
 First, let’s create a minimal file, just the scaffolding
 HTML/head/body tags. The very first
 line is the doctype for HTML5, which is much simpler than the doctypes you
 might have seen for HTML4. In the <head> tag I
 also specify the character set as UTF-8, not because I use
 any exotic Unicode in this example, but because some validation tools will
 complain if it is not specified:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Basic SSE Example</title>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 </body>
</html>
You can also see I have a <pre> tag, with the
 id set to "x". I have used a
 <pre> tag rather than a <p> or
 <div> tag so that it can be filled with the received
 data (which contains line feeds) without any modification or
 formatting.
Warning
Be aware of the potential for JavaScript injection when using
 server-side data with no checking.

 Initially the <pre> block is hardcoded to
 say “Initializing….” We will replace that text with our data.
JQuery Versus JavaScript
In case you’ve been using JQuery everywhere, the equivalent of
 $("#x") to get a reference to x in your HTML
 is document.getElementById("x"). To replace the text, we
 assign it to innerHTML. To append to the existing
 text, we use += instead of
 = like this:
//Equivalent of $("#x").html("New content\n");
document.getElementById("x").innerHTML = "New content\n"
//Equivalent of $("#x").append("Append me\n");
document.getElementById("x").innerHTML += "Append me\n"

Now let’s add a <script> block, at the bottom of the HTML body:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Basic SSE Example</title>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var es=new EventSource("basic_sse.php");
 </script>
 </body>
</html>
We created an EventSource object that takes a single parameter: the URL to connect to. Here we
 connect to basic_sse.php.
 Congratulations, we now have a working SSE script. This one line is
 connecting to the backend server, and a steady stream of data is now being
 received by the browser. But if you run this example, you’d be forgiven
 for thinking, “Well, this is dull.”
To see the data that SSE is sending us we need to handle the
 “message” event. SSE works asynchronously, meaning our program does not
 sit there waiting for the server to tell it something, and meaning we do
 not need to poll to see if anything new has happened. Instead our
 JavaScript gets on with its life, interacting with the user, making silly
 animations, sending key presses to government organizations, and whatever
 else we use JavaScript for. Then when the server has something to say, a
 function we have specified will be called. This function is called an “event handler”; you might also hear it referred
 to as a “callback.” In JavaScript, objects generate events, and each
 object has its own set of events we might want to listen for. To assign an
 event handler in JavaScript, we do the following:
es.addEventListener('message',FUNCTION,false);
The es. at the start means we want to listen for an
 event related to the EventSource object we have just
 created. The first parameter is the name of the event, in this case
 'message'. Then comes the function to process that
 event.[10]
The FUNCTION we use to process the event takes a
 single parameter, which by convention will be referred to simply as
 e, for event. That e is an object, and what we
 care about is e.data, which contains the new message the
 server has sent us. The function can be defined separately, and its name
 given as the second parameter. But it is more usual to use an anonymous
 function, to save littering our code with one-line functions (and having
 to think up suitable names for them). Putting all that together, we get
 this:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Basic SSE Example</title>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var es = new EventSource("basic_sse.php");
 es.addEventListener("message", function(e){
 //Use e.data here
 },false);
 </script>
 </body>
</html>
Still it does nothing! So in the body of the event handler function,
 let’s have it append e.data to the <pre>
 tag. (We prefix a line feed so each message goes on its own line.) The
 final frontend code looks like this:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Basic SSE Example</title>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var es = new EventSource("basic_sse.php");
 es.addEventListener("message", function(e){
 document.getElementById("x").innerHTML += "\n" + e.data;
 },false);
 </script>
 </body>
</html>
At last! We see one line that says “Initializing…,” then a new
 timestamp appears every second (see Figure 2-1).
[image: basic_sse.html after running for a few seconds]

Figure 2-1. basic_sse.html after running for a few seconds

We could be writing handlers for other
 EventSource events, but they are all optional, and I
 will introduce them later when we first need them.

Using JQuery?

Nowadays most people use jQuery. However, the SSE boilerplate code is so easy
 there is not much for JQuery to simplify. For reference, here is the
 minimal example rewritten for JQuery:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Basic SSE Example</title>
 <script src="//code.jquery.com/jquery-1.11.0.min.js"></script>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var es = new EventSource("basic_sse.php");
 es.addEventListener("message", function(e){
 $("#x").append("\n" + e.data);
 },false);
 </script>
 </body>
</html>
This next version (basic_sse_jquery_anim.html in the book’s source
 code) spruces it up with a fade-out/fade-in animation each time. This
 version also does a replace instead of an append, so you get to see only
 the most recent item:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Basic SSE Example</title>
 <script src="//code.jquery.com/jquery-1.11.0.min.js"></script>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var es = new EventSource("basic_sse.php");
 es.addEventListener("message", function(e){
 $("#x").fadeOut("fast", function(){
 $("#x").html(e.data);
 $("#x").fadeIn("slow");
 });
 },false);
 </script>
 </body>
</html>

Minimal Example: The Backend

The first backend (server-side) example we will study is written in PHP, and looks like
 this:
<?php
header("Content-Type: text/event-stream");
while(true){
 echo "data:".date("Y-m-d H:i:s")."\n\n";
 @ob_flush();@flush();
 sleep(1);
 }
Just like the frontend code, this is wonderfully short, isn’t it? No
 libraries, no dependencies, just a few simple lines of vanilla PHP. And
 just like the frontend there is more we could be doing, but again it is
 all optional.
Going through the script, the very first line,
 <?php, identifies this as a PHP script. Then we send back a MIME type of text/event-stream, using the
 header() function. text/event-stream is
 the special MIME type for SSE. Next we enter an infinite loop
 (while(true){...} is the PHP idiom for that), and in that
 loop we output the current timestamp every second.
The SSE protocol just involves prefixing our message data (the
 timestamp) with data: and following it
 with a blank line. So starting at 1 p.m. on February 28, 2014, it
 outputs:
data:2014-02-28 13:00:00

data:2014-02-28 13:00:01

data:2014-02-28 13:00:02

data:2014-02-28 13:00:03

...
What about the @ob_flush;@flush(); line? This tells PHP
 (and Apache) to send the data back to the client immediately, rather than
 buffer it up and send it back in batches. The @ prefix means
 suppress errors, and is fine here: there are no interesting errors we need
 to know about, but ob_flush() might complain if there is no
 data to flush out. (In case you wondered, the order does matter.
 ob_flush() must come before flush().)
PHP Error Suppression
For the PHP experts: @ is said to be slow. But putting that in context, it adds on the order of
 0.01ms to call it twice, as shown here. So, as long as you are not
 putting it inside a tight loop, just relax. @foo() is
 shorthand for $prev=error_reporting(0); before the call to
 foo(), then error_reporting($prev);
 afterwards. So if you are really performance-sensitive and you find a
 need to use @foo() in a loop, and understand the
 implications, it is better to put those commands outside the
 loop.
In the case of ob_flush, it is an
 E_NOTICE that we want to suppress. So this an even
 better longhand:
$prev = error_reporting();
error_reporting($prev & ~E_NOTICE);
...
ob_flush();
flush();
...
error_reporting($prev);
http://bit.ly/1gCNyfX
 suggests flush() can never throw an error, so
 @ could be dropped there, and we can just leave it on
 ob_flush(). http://bit.ly/1elPD1S shows the
 notices PHP might throw from ob_flush().

Do infinite loops make you nervous? It is OK here. We are using up
 one of Apache’s threads/processes, but as soon as the browser closes the
 connection (whether from JavaScript, or the user closing the window) the
 socket is closed, and Apache will close down the PHP instance.
What about caching, whether by the client or intermediate proxies,
 you may wonder? I agree, caching would be awfully bad for SSE: the whole
 point is we have new information we want the user to know about. In my
 testing the client has never cached anything. Because this is intended as
 a minimal example, I chose to ignore caching. Examples in other chapters
 will send headers that explicitly request no caching, just to be on the
 safe side (see Cache Prevention).
Warning
One other thing to watch out for when using SSE is that the
 browser might kill the connection if it goes quiet. For instance, some
 versions of the Chrome browser kill (and reopen) the connection after 60
 seconds. In our real applications we will deal with this (see Adding Keep-Alive). Here it is not needed, because the
 backend never goes quiet—we output something every single second.

The Backend in Node.js

In this section I will use the Node.js language for the backend. Node.js is
 the same JavaScript you know from the browser, even with the same
 libraries (strings, regexes, dates, etc.), but done server side, and then
 extended with loads of modules. The biggest thing to watch out for when
 using Node.js is that, by default, everything is nonblocking—asynchronous,
 in other words—and asynchronous coding needs a different mindset. But it
 is this nonblocking, event-driven, behavior that makes it well-suited to
 data push applications.
The PHP server solution we used earlier is better termed
 “Apache+PHP” because Apache (or the web server of your choice) handles the
 HTTP request handling (and a whole heap of other stuff, such as
 authentication), and PHP just handles the logic of the request itself.
 Apart from keeping the code samples fairly small, this is also the most
 common way people use PHP. Node.js comes with its own web server library,
 and that is the way most people use it for serving web content—so that is
 the way we will use it here.
Note
Let’s not get drawn into language wars. All languages suck until
 you are used to them. Then they just suck in ways you know how to deal
 with. The real strengths of PHP and Node.js are
 rather similar: very popular, easy to find developers for, and lots of
 useful extensions.

Minimal Web Server in Node.js

So, before I show how to support SSE with Node.js, we should first
 take a look at the minimal web server in Node.js:
var http = require("http");

http.createServer(function(request,response){
 response.writeHead(200,
 { "Content-Type": "text/plain" }
);
 var content="Hello World\n";
 response.end(content);
 }).listen(1234);
The first line includes the http library; this is the CommonJS way of
 importing a module. We can then start running an HTTP server with a
 single line:
http.createServer(myRequestHandler).listen(port);
There is a lot of power in that single line: it will start
 listening on the port we give, handle all the HTTP protocol, and handle
 multiple clients, and when each client connects the specified request
 handler is called. By default it will listen on all local IP addresses.
 If you just wanted it to listen on 127.0.0.1, specify that as
 follows:
http.createServer(myRequestHandler).listen(port,"127.0.0.1");
By convention the request handler is implemented with an anonymous
 function, and our example follows that convention. The function takes
 two parameters: request, which is an instance of
 http.ClientRequest,[11] and response, which is an instance of
 http.ServerResponse.[12]
The request parameter tells us what the client is
 asking for. The response object is then used to give it to
 the client. This minimal example completely ignores the user request:
 everybody gets the same thing (the content string). We make
 two calls on the response object. The first is to specify
 the status (HTTP status code 200 means “Success”) and content-type
 header (here plain text, not HTML). The second call,
 response.end(content), is a shortcut for two calls:
 response.write(content) to send data to the client
 (optionally specifying the encoding), and response.end() to
 say that is everything that needs to be sent, we are done.
To test this code, save it as basic_sse_node_server1.js, and from the
 command line run node basic_sse_node_server1.js. Then in
 your browser visit http://127.0.0.1:1234/, and you should see
 “Hello World.”

Pushing SSE in Node.js

In the previous section we ignored the user input, and output static
 plain-text content. For the next block of code we continue to ignore the
 user input, but output dynamic text—the current timestamp, just as our earlier PHP code
 did:
var http = require("http");

http.createServer(function(request, response){
 response.writeHead(200, { "Content-Type": "text/event-stream" });
 setInterval(function(){
 var content = "data:" +
 new Date().toISOString() + "\n\n";
 response.write(content);
 }, 1000);
 }).listen(1234);
The first change is trivial: output the
 text/event-stream content type. But the biggest
 change from the previous example is the addition of setInterval(
 ... ,1000) to run some code once per second. In PHP we used an
 infinite loop, and a sleep(1) command to run a command once per second. If we did that in
 Node.js we would block the whole web server, and no other clients could
 connect. When writing a Node.js HTTP server, it is important to exit the
 request handler as quickly as possible. So the Node.js way is to use
 setInterval. The code being called once each second is
 reasonably straightforward. The “data:” prefix and the “\n\n” suffix are
 the SSE protocol. new Date().toISOString() is the
 JavaScript idiom to get the current timestamp.
From the command line, start this with node
 basic_sse_node_server2.js. Don’t try to test it in a browser just
 yet (it won’t work). If you have curl installed, you can
 test with curl http://127.0.0.1:1234/. A new timestamp will
 appear once a second, with a blank line between each:
data:2014-02-28T13:00:00.123Z

data:2014-02-28T13:00:01.145Z

data:2014-02-28T13:00:02.140Z

data:2014-02-28T13:00:03.142Z

...
Some Improvements
There are a couple of ways we can enhance the script, though
 they get away from this chapter’s theme of
 minimal. At the top, add this line:
var port = parseInt(process.argv[2] || 1234);
Then change the final line of the script so it looks like
 this:
 ...
 }).listen(port);
This allows you to specify the port to listen to, on the command
 line. If you do not have a web server already running, you could run
 the script as root specifying port 80.
The next change is to give some insight into how it is working.
 Replace response.write(content); with these three
 lines:
var b = response.write(content);
if(!b)console.log("Data queued (content=" + content + ")");
else console.log("Flushed! (content=" + content + ")");
Just as in the browser, JavaScript console.log() is
 used to let the programmer see what is going on. The return value from
 response.write() is true if the data got flushed out
 cleanly. This happens most of the time, and it is good. It is false if
 the data had to be cached in memory first. That means that at the time
 response.write() returned, the data had not been sent to
 your client yet. This happens if you try to send data too quickly
 (this is hard to see; even changing the interval from 1000ms to 1ms
 won’t count as “too quickly,” but getting rid of
 setInterval and using a while(true){...}
 loop will do it), or if the socket has become broken.
Start the node server again, and then start your
 curl client again. Wait for some data to come
 through. Now press Ctrl-C to kill the curl client.
 Over in the node window see how it is still trying to send data.
 Uh-oh…that is something else Apache takes care of for us when we use
 Apache+PHP.
What we need to do is recognize when the client has
 disconnected, which can be done by listening for the “close” event.
 The “close” event is part of request.connection, so we
 can respond to it by adding this code:
request.connection.on("close", function(){
 response.end();
 clearInterval(timer);
 console.log("Client closed connection. Aborting.");
 });
This code has to come after the call to
 setInterval. Just before that, capture the return value
 of setInterval as follows:
var timer = setInterval(function(){
 ...
So, now when the client disconnects, that function triggers and
 we get to cleanly close the response, as well as shut
 down the interval that was ticking away every second.
If you look at basic_sse_node_server3.js in the book’s
 source code, you will also spot a couple of extra
 console.log() commands.

Now to Get It Working in a Browser!

First, start up your node server (node
 basic_sse_node_server3.js), look up basic_sse.html
 from earlier in this chapter, open it in an editor, and find
 this line:
var es = new EventSource("basic_sse.php");
Change it to use our Node.js server that is listening on port
 1234:
var es = new EventSource("http://127.0.0.1:1234/");
Now open basic_sse.html in
 your browser. (This is assuming you have Apache listening on port 80,
 serving at least HTML files.)
Nothing happens. You will see “Preparing…,” and it just sits
 there. Why? The problem is that the HTML is being loaded from port 80,
 but is then trying to make a connection to port 1234. A different port
 number is enough for it to count as a different server and that is not
 allowed (for security reasons). We will look at cross-origin resource
 sharing (CORS) in Chapter 9, which gives servers a way
 to say they want to accept connections from clients that loaded their
 content from somewhere else. But the alternative is to use Node.js to
 deliver the HTML file to the clients; this is the normal way to do
 things in the Node.js world.
(Before you go any further, change back basic_sse.html to connect to
 basic_sse.php again.) Then, so the script can read
 files from the local filesystem, add this line to the top of your
 script:
var fs = require("fs");
Then the big change is at the top of the request handler. Add this
 block:
if(request.url!="/basic_sse.php"){
 fs.readFile("basic_sse.html",
 function(err,file){
 response.writeHead(200,
 {"Content-Type" : "text/html"}
);
 response.end(file);
 });
 return;
 }
When you get a certain URL, treat it as a request for the
 streaming. But the rest of the time (notice the !=) send
 back the HTML file instead. readFile() is one of Node.js’s
 async operations. You give the filename, then an anonymous function to
 deal with the content when it has been loaded. In the meantime, while
 waiting for the file to be loaded, you return from the request handler.
 When the file does load, we simply spit it out to the client, with a text/html content type, and
 end() the connection.
Now you can browse to http://127.0.0.1:1234
 in your browser.
Modifying the HTML File
What’s that? Why do we mention “php” in the preceding code
 snippet? You’ve gone to all the trouble of those language wars with
 the PHP Brigade, going so far as to drug their tea, complain about
 their personal hygiene to the boss, and email them over 35 links to
 articles on how important and easy async programming really is, and
 now it looks like you are using Node.js to serve PHP content. The
 reason is simple: basic_sse.html
 was written to connect to the PHP script, and I don’t want to make
 another file.
Well, this is easy to fix. Between loading the file from disk
 and sending it to the client, why not modify the URL it says to
 connect to! Make the following highlighted changes:
if(request.url != "/sse"){
 fs.readFile("basic_sse.html",
 function(err,file){
 response.writeHead(200,
 {"Content-Type" : "text/html"}
);
 var s = file.toString();
 s = s.replace("basic_sse.php","sse");
 response.end(s);
 });
 return;
 }
By the way, file is actually a buffer,
 not a string (because it might contain binary data), which is why we
 first have to convert it to a string.

You can find the final file with the code from this section and
 from the two sidebars in the book’s source code as basic_sse_node_server.js, and here it is in
 full:
var http = require("http"), fs = require("fs");
var port = parseInt(process.argv[2] || 1234);

http.createServer(function(request, response){
 console.log("Client connected:" + request.url);
 if(request.url!="/sse"){
 fs.readFile("basic_sse.html", function(err,file){
 response.writeHead(200, { 'Content-Type': 'text/html' });
 var s = file.toString(); //file is a buffer
 s = s.replace("basic_sse.php","sse");
 response.end(s);
 });
 return;
 }
 //Below is to handle SSE request. It never returns.
 response.writeHead(200, { "Content-Type": "text/event-stream" });
 var timer = setInterval(function(){
 var content = "data:" + new Date().toISOString() + "\n\n";
 var b = response.write(content);
 if(!b)console.log("Data got queued in memory (content=" + content + ")");
 else console.log("Flushed! (content=" + content + ")");
 },1000);
 request.connection.on("close", function(){
 response.end();
 clearInterval(timer);
 console.log("Client closed connection. Aborting.");
 });
 }).listen(port);
console.log("Server running at http://localhost:" + port);
It is quite a bit more code than basic_sse.php because it is doing the tasks
 that Apache was taking care of in the Apache+PHP solution.

Smart, Sassy Exit

So that was the Hello World of the SSE world. Just a few lines on
 the frontend and a few lines on the backend; it couldn’t be simpler, could
 it? In the next five chapters we build on this knowledge to make something
 more sophisticated and robust that is usable on practically every desktop
 and mobile browser.

[9] For the moment, stick to keeping your HTML and your server-side
 script on the same machine. In Chapter 9 we will cover
 CORS, which (in some browsers) will allow the
 server-side script to be on a different machine.

[10] The third parameter of false means handle the event
 in the bubbling phase, rather than the capturing phase. Yeah,
 whatever. Just use false.

[11] See http://nodejs.org/api/http.html#http_class_http_clientrequest.

[12] See http://nodejs.org/api/http.html#http_class_http_serverresponse.

Chapter 3. A Delightfully Realistic Data Push
 Application

This chapter will build upon the code we created in the previous
 chapter to implement a realistic (warts and all) data push application (see
 the next section for the problem domain that has been chosen). For this
 chapter and the following two, the code we build will still only work in
 browsers with SSE support; then in Chapters 6 and 7, I will show how you can adapt both the
 frontend and backend to work with older browsers.
Note
Because this chapter is SSE only, if you are testing on an Android
 device you need to install either Firefox for Android or Chrome for
 Android. If you are testing on Windows, install Firefox, Chrome, Safari, or Opera. C’mon, I’m sure you
 already have at least one of those installed—you told me you were a
 professional developer!

This chapter contains a bit of backend PHP code that may not feel
 relevant to your own application. I suggest you at least skim it, because
 you will see it built upon in later chapters and it shows, step-by-step, one
 approach for unit testing and functional testing of data push
 systems.
Our Problem Domain

The problem domain I will cover in this and the next few chapters is from the
 finance industry. It has its own jargon—almost as bad as the software
 industry—so I will introduce some of the terminology you will meet, and
 just enough background information to help you understand some of the
 design decisions.
The job of our application is to broadcast FX bid/ask
 quotes from a bank or
 broker to traders. The first bit of jargon
 is FX. This stands for Foreign eXchange; in other words, the buying and
 selling of currencies. It is a global decentralized
 market. Yikes, more jargon. A decentralized market means there
 is no single place where currencies are traded. Compare this to a stock
 exchange, where there is a single place to buy and sell shares in a
 company. (That is not strictly true; large companies might list their
 shares on two or three stock exchanges.)
The broker is a business. But it doesn’t try to make money off of
 speculating about currency movements the way the traders do. Instead,
 brokers make their money off of the spread (and sometimes a commission as
 well). The spread is the difference between the bid and the ask price. The
 bid price is the lower of the two prices: it is how much the broker is
 willing to buy the currency for. It is how much you get if you choose to
 sell. The ask price is slightly higher and is how much the broker is
 willing to sell for. It is how much you have to pay if you want to
 buy.
The FX market is global. The New York stock market is just open
 during business hours in the New York time zone. But people want to buy
 and sell currencies all throughout the day, all around the world. It is a
 24/5 market. By convention it opens at 5 p.m. on Sunday, New York local
 time (which is the start of the business week in New Zealand), and closes
 at 5 p.m. on Friday, again New York time.
The major currencies that are traded, with their abbreviations, are
 US dollar (USD), the euro (EUR), Japanese yen (JPY), British pound (GBP),
 Australian dollar (AUD), Canadian dollar (CAD), and the Swiss franc (CHF).
 Typically, an FX broker will be listing between 6 and 40 FX pairs (also
 called symbols).
What does all this mean to us?
	We have to send two prices from the server to the client,
 along with a timestamp.

	We need to do this for more than one currency pair.

	We have to do it with minimal latency (sudden movements and
 stale prices will cost our traders money).

	Our application will be running for 120 hours in a row, then
 will have nothing to do for 48 hours, before the cycle repeats.

The Backend

The backend demonstrated in this chapter is more complicated than the
 one shown in Chapter 2. We want multiple data feeds (aka
 symbols); call it multiplexing when you need to impress your boss. We want it to be used for
 repeatable tests, we want realistic-looking data, and we want it to be in
 sync for each client that connects. All without using a database. Those
 are quite a few demands! But it can be done. We will use a few techniques:
	Use a one-line JSON protocol.

	Use a random seed. A given random seed will always give the
 same stream of data. In our case it will give a completely
 predictable set of ticks for each symbol.

	Allow the random seed to be specified by the client. This
 allows a client to request the same test data over and over.

	Add together cycles of different periods, with a bit of random
 noise added on. This makes the data look realistic. (This book is
 not the place for a discussion of random walks and efficient market
 theory. Find a passing economist if you are interested in that
 subject.)

	Measure clock drift and adjust for it.

Design for Testability
There are two ways to design any system, with regard to testing. The first is
 with no consideration for testability. The second is to make it easy to
 test; but this does not usually come for free, because it often requires
 adding extra variables and extra functions.
However, a system that has been designed for testability is not
 just easier to test, it is faster to test. In
 extreme cases it can be the difference between calling a getter
 (completing a test in a matter of milliseconds), and a horribly
 complicated solution involving screen scraping and OCR that takes
 seconds to run. That has a knock-on effect: tests that complete quickly
 are run more often, bugs are found sooner and in less time, so your
 product is delivered sooner and is of better quality. If your test suite
 can be run every 5 minutes, then when it breaks, you instantly know
 which line of code broke it. Contrast this with a test suite that is so
 slow it can only be run on the weekend. You come in Monday morning and
 it might take you until Tuesday to work out which of your changes last
 week introduced the problem. (The complex testing solutions also tend to
 be fragile—sensitive to minor changes in layout,
 for instance.)
In our case, our system spits out random (okay, pseudorandom)
 data. Design for Testability here means taking
 control of the random sequence, so it can be exactly repeated if the
 need arises. This is a testing design pattern called Parameter
 Injection.
To complicate things, there might not just be memory and CPU
 involved, but also a network—so runtime could vary quite a lot from test
 run to test run, and we put timestamps to millisecond accuracy in the
 JSON we send back. Therefore, we need to find a way to make sure the
 timestamps are repeatable. How we tackle this is covered in the main
 text. (If we didn’t do this, our choice would just be to range-check the
 fields in the data we get: make sure each timestamp is formatted
 correctly and is later than the previous timestamp, make sure the prices
 are between 95.00 and 105.00, etc. This is better than nothing, but
 could lead to missing subtle bugs and regressions.)

The first design decision we will make is to pass JSON strings as
 the message. We’ll send back exactly one JSON string per line, and one per
 message. This is a reasonable design decision anyway, because JSON is
 flexible and allows hierarchical data, but as you will see in later
 chapters the one-line-per-message decision makes adapting our code to
 non-supporting browsers easier.
Note
If you read Our Problem Domain on the FX
 industry, you will know we are broadcasting both bid and ask quotes. I
 chose to do this deliberately, rather than just send a single price,
 because it makes things harder. If the server just has a single price
 we’d be tempted to make simpler design decisions. Then we would need to
 do lots of refactoring if we decided to add a second value. By using two
 pieces of data, it will be easy to change our code to support N pieces
 of data; and it will still work fine even if we only have a single
 value.

Figure 3-1 shows the high-level view of what the
 backend’s main loop (a deliberate infinite loop, just as in Chapter 2) will be doing.
[image: Backend’s main loop]

Figure 3-1. Backend’s main loop

Before we enter that loop we have some initialization steps: define
 a class, create our test symbols, process client input parameters, and set
 the Content-Type header. Here is our
 first draft of the script, using hardcoded prices (where the only
 initialization step we need at this stage is setting the header):
<?php
header("Content-Type: text/event-stream");

while(true){
 $sleepSecs = mt_rand(250,500)/1000.0;
 usleep($sleepSecs * 1000000);

 $d=array(
 "timestamp" => gmdate("Y-m-d H:i:s"),
 "symbol" => "EUR/USD",
 "bid" => 1.303,
 "ask" => 1.304,
);
 echo "data:".json_encode($d)."\n\n";
 @ob_flush();@flush();
 }
Rather than try to debug it over an SSE connection, I suggest you
 first run it from the command line:
php fx_server.hardcoded.php
That is one of the beauties of the SSE protocol: it is a simple text
 protocol. Press Ctrl-C to stop it. You should have seen output like
 this:
data:{"timestamp":"2014-02-28 06:09:03","symbol":"EUR\/USD","bid":1.303, ↵
 "ask":1.304}

data:{"timestamp":"2014-02-28 06:09:04","symbol":"EUR\/USD","bid":1.303, ↵
 "ask":1.304}

data:{"timestamp":"2014-02-28 06:09:08","symbol":"EUR\/USD","bid":1.303, ↵
 "ask":1.304}
Note that the forward slash in EUR/USD gets escaped in the JSON.
 Also, because of the call to gmdate those are GMT timestamps
 we see there. This is a good habit: always store and broadcast your data
 in GMT, and then adjust on the client if you want it shown in the user’s
 local time zone.
JSON/SSE Protocol Overhead
How much wastage is there in choosing JSON for all data
 transmission? For instance, how does the use of JSON compare with
 sending our data using a minimalist CSV encoding (data:2014-02-28
 03:15:24,EUR/USD,1.303,1.304). And how much wastage is there in
 the SSE protocol itself?
The last question is easy: the SSE overhead is 6 bytes per
 message, the “data:” and the extra line break. This is compared to the
 fallback approaches we will look at in Chapters 6 and 7.
Our JSON string is longer than it needs to be; to make it readable
 I have chosen verbose names, but the JSON message could instead have
 looked like this:
data:{"t":"2014-02-28 06:09:03","s":"EUR\/USD","b":1.303,"a":1.304}
What about a binary protocol? Well, neither JavaScript nor SSE get on
 well with binary, but ignoring that, let’s have 4 bytes for the
 timestamp (though if you need milliseconds, or want it to work past
 2030, you will end up using 8 bytes), 7 bytes plus a zero-terminator for
 the symbol, and 8 bytes each for bid/ask as doubles. That gives us 28
 bytes (assuming end-of-record is implicit). Table 3-1
 summarizes all that.
Note
Because we flush data immediately (to get minimal latency), you
 might want to also include the overhead of a TCP/IP packet and
 Ethernet frame around each message. That might be fair if you are
 comparing to a polling approach. For instance, if the pushed data
 averages one message per second, there will be 59 times more TCP/IP
 packets compared to a once-every-60-second-poll. Possibly even more if
 WiFi and mobile networks are involved. But if polling (and especially
 if long-polling, see Chapter 6), don’t forget to
 allow for the HTTP headers, in each direction, on each request.
 Remember cookies and auth headers get sent with every request,
 too.
As I mentioned in Chapter 1, if you want to
 make a useful comparison of two alternatives, in my opinion the best
 way is to build both approaches, and then benchmark each, under the
 most realistic load you can manage. Unless you are building an
 intranet application, realistic also means the
 server and the test clients should be in different data
 centers.

Table 3-1. Byte comparison of different data formats
	 	Using SSE	Using Fallbacks
	Binary	34	28
	CSV	46	40
	JSON-short	69	63
	JSON-readable	86	80

Before you make decisions based on those numbers though, remember
 that SSE communication can, and should, be gzipped, and you can expect
 that the more compact your format, the less compression gzip can
 do.
Our FX data will be nice and regular, so you might be tempted to
 go with CSV instead of JSON. I am going to continue to use JSON because
 in other applications your data might not be so simple (JSON can cope
 with nested data structures) and because it makes development easier if
 we need to add another field. In fact, you will see a more complicated
 data structure being used as this application evolves. And I will stick
 with readable field names, to help us keep our sanity.

Our first draft, fx_server.hardcoded.php, implements two of the
 three parts of our high-level algorithm: it sleeps and it sends the data
 to the client. In the next section we will implement choosing the symbol
 and price instead of hardcoding them.

The Frontend

We are going to develop the backend a lot more, but now that we have the
 simplest possible server-side script, let’s create the simplest possible
 HTML page to go with it:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>FX Client: latest prices</title>
 </head>
 <body>

 <table border="1" cellpadding="4" cellspacing="0">
 <tr><th>USD/JPY</th><th>EUR/USD</th><th>AUD/GBP</th></tr>
 <tr><td id="USD/JPY"></td><td id="EUR/USD"></td><td id="AUD/GBP"></td></tr>
 </table>

 <script>
 var es = new EventSource("fx_server.hardcoded.php");
 es.addEventListener("message", function(e){
 var d = JSON.parse(e.data);
 document.getElementById(d.symbol).innerHTML = d.bid;
 },false);
 </script>

 </body>
</html>
When you load that in a browser you will see a three-cell table, and
 the middle cell, labelled EUR/USD, will appear as 1.303. Then nothing. It
 looks as dull as dishwater, doesn’t it? But, behind the scenes, the server
 is actually sending the 1.303 over and over again. This frontend, basic
 though it is, will work with each of the improvements we are about to make
 to the backend.
If you followed along in Chapter 2, the first two lines of the JavaScript should look familiar.
 Create an EventSource object, specifying the server to
 connect to. Then assign a message event handler. e.data
 contains a string in JSON format, so the first line of our event handler
 is var d=JSON.parse(e.data);[13] to turn that into a JavaScript object.
Note
If the JSON data is bad, it will throw an exception. Starting in
 Chapter 5, we will wrap it in try and
 catch, as part of making the code production
 quality.

The other line of our event handler starts with
 document.getElementById(d.symbol), which finds the HTML table
 cell that has been marked with one of id="USD/JPY",
 id="EUR/USD", and id="AUD/GBP".[14] Then the second half of that line fills it with the bid
 price: .innerHTML=d.bid;.
We will come back and do more on the frontend, but now let’s go back
 and work on the backend some more.

Realistic, Repeatable, Random Data

Earlier we created a script that does repeatable data; now we have to make it
 random and realistic. The first problem with fx_server.hardcoded.php is that there is only a
 single symbol (currency pair); I want different symbols. Because each
 symbol has a lot in common and only the numbers will be different, I have
 created a class, FXPair, as shown in the following code. If
 PHP classes look unfamiliar, see Classes in PHP in
 Appendix C.
<?php
class FXPair{
 /** The name of the FX pair */
 private $symbol;
 /** The mean bid price */
 private $bid;
 /** The spread. Add to $bid to get "ask" */
 private $spread;
 /** Accuracy to quote prices to */
 private $decimalPlaces;
 /** Number of seconds for one bigger cycle */
 private $longCycle;
 /** Number of seconds for the small cycle */
 private $shortCycle;

 /** Constructor */
 public function __construct($symbol,$b,$s,$d,$c1,$c2){
 $this->symbol = $symbol;
 $this->bid = $b;
 $this->spread = $s;
 $this->decimalPlaces = $d;
 $this->longCycle = $c1;
 $this->shortCycle = $c2;
 }

 /** @param int $t Seconds since 1970 */
 public function generate($t){
 $bid = $this->bid;
 $bid+= $this->spread * 100 *
 sin((360 / $this->longCycle) * (deg2rad($t % $this->longCycle)));
 $bid+= $this->spread * 30 *
 sin((360 / $this->shortCycle) *(deg2rad($t % $this->shortCycle)));
 $bid += (mt_rand(-1000,1000)/1000.0) * 10 * $this->spread;
 $ask = $bid + $this->spread;

 return array(
 "timestamp"=>gmdate("Y-m-d H:i:s",$t),
 "symbol"=>$this->symbol,
 "bid"=>number_format($bid,$this->decimalPlaces),
 "ask"=>number_format($ask,$this->decimalPlaces),
);
 }

}
We have member values for bid, spread, and decimal places. For our
 purposes, bid stores the mean price: our values will
 fluctuate around this price. spread is the difference between
 the bid and ask prices (see Our Problem Domain).
 Why do we have a value to store the number of decimal places? By
 convention, currencies involving JPY (Japanese yen) are shown to three
 decimal places; others are shown to five decimal places.
We then have two more member variables: long_cycle and
 short_cycle. If you look at generate you will
 see these control the speed at which the price rises and falls. We use two
 cycles to make the cyclical behavior more interesting; the first, slower
 cycle has a weight of 100, and the second, shorter cycle has a relative
 weight of 30. In addition, we add in some random noise, with a weight of
 10. Are you wondering about (mt_rand(-1000,1000)/1000.0)? PHP
 does not have a function for generating random floating point numbers. So
 we create a random integer between –1000 and +1000 (inclusive) and then
 divide by 1000 to turn it into a –1.000 to +1.000 random float. In each
 case, we multiply by the spread and by the weight.
Note
See Random Functions in Appendix C for why we use mt_rand, and how
 the random seed is set.

Finally, generate returns an associative array (aka
 an object in JavaScript, a dictionary in .NET, a map in C++) of the
 values. We use number_format to chop off extra decimal
 places. So, 98.1234545984 gets turned into 98.123.
Now how do we use this class? At the top of fx_server.seconds.php we create one object for
 each FX pair (EUR/USD appears twice because we want it to update twice as
 often):
$symbols = array(
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("USD/JPY", 95.10, 0.01, 3, 341, 55),
 new FXPair("AUD/GBP", 1.455, 0.0002, 5, 319, 39),
);
Next, in our main loop we choose which symbol to modify
 randomly:
$ix = mt_rand(0,count($symbols)-1);
And then the hardcoded $d array in fx_server.hardcoded.php can be replaced with a
 call to generate:
$d = $symbols[$ix]->generate($t);
The full fx_server.seconds.php
 is shown here:
<?php
include_once("fxpair.seconds.php");

header("Content-Type: text/event-stream");

$symbols = array(
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("USD/JPY", 95.10, 0.01, 3, 341, 55),
 new FXPair("AUD/GBP", 1.455, 0.0002, 5, 319, 39),
);

while(true){
 $sleepSecs = mt_rand(250,500)/1000.0;
 usleep($sleepSecs * 1000000);

 $t = time();
 $ix = mt_rand(0,count($symbols)-1);
 $d = $symbols[$ix]->generate($t);
 echo "data:".json_encode($d)."\n\n";
 @ob_flush();@flush();
 }
Note a few things about this code. The price we generate is solely
 based on the current time. We never store a previous value, which we then
 increase/decrease randomly; this might have been your first idea for
 implementing random prices. As well as being nice and clean and enabling
 repeatable, reliable testing, this also brings with it a little bonus: we
 can put two entries for EUR/USD in our array to get twice as many prices
 generated for it.
See Falling Asleep in Appendix C for why I use usleep() instead of
 sleep().
Do you wonder why we assign $t in the main loop, when
 all we do is pass it to generate()? Why not put the $t
 = time(); inside of generate()? This comes back to
 Design for Testability: by using a parameter we can pass in a certain
 value and always get back the same output from generate(). So
 we can easily create a unit test of generate(). If we don’t
 do this, the global function time()
 becomes a dependency of the generate()
 function. And that sucks. (“That sucks” summarizes
 about 100 pages from xUnit Test Patterns by
 Gerard Meszaros (Addison-Wesley); refer to that book if you
 want to understand this in more depth.)

Fine-Grained Timestamps

When you run fx_server.seconds.php from the command line, you will see something like this:

data:{"timestamp":"2014-02-28 06:49:55","symbol":"AUD\/GBP","bid":"1.47219", ↵
 "ask":"1.47239"}

data:{"timestamp":"2014-02-28 06:49:56","symbol":"USD\/JPY","bid":"94.956", ↵
 "ask":"94.966"}

data:{"timestamp":"2014-02-28 06:49:56","symbol":"EUR\/USD","bid":"1.30931", ↵
 "ask":"1.30941"}

data:{"timestamp":"2014-02-28 06:49:57","symbol":"EUR\/USD","bid":"1.30983", ↵
 "ask":"1.30993"}

data:{"timestamp":"2014-02-28 06:49:57","symbol":"EUR\/USD","bid":"1.30975", ↵
 "ask":"1.30985"}

data:{"timestamp":"2014-02-28 06:49:57","symbol":"AUD\/GBP","bid":"1.47235", ↵
 "ask":"1.47255"}

data:{"timestamp":"2014-02-28 06:49:58","symbol":"AUD\/GBP","bid":"1.47129", ↵
 "ask":"1.47149"}
This data looks nice and random, doesn’t it? But if you watch it for
 long enough you will spot the long and short cycles we programmed in.
 Notice that EUR/USD has two entries with the same timestamp. What we will
 do next is incorporate milliseconds into our timestamps.
We only need to make these changes to our code:
	In our main loop, use microtime(true) instead of
 time().

	In generate(), include milliseconds in our
 formatted timestamp.

microtime(true) returns a float: the current timestamp
 in seconds since 1970 (just like time() did) but to
 microsecond accuracy.
What about formatting our timestamp? What we currently have
 is:
'timestamp'=>gmdate("Y-m-d H:i:s",$t),
This still works. Even though $t is a floating
 point number, it is still seconds since 1970 and PHP will implicitly
 convert it to an int for the gmdate() function. So we just need to
 paste on the number of milliseconds.
We can get that number with ($t*1000)%1000 (multiply by
 1,000 to turn $t into milliseconds since 1970, then
 just get the last three digits), and then use sprintf to
 format it so it is always three digits, and preceded by a decimal
 point:
'timestamp'=>gmdate("Y-m-d H:i:s",$t).
 sprintf(".%03d",($t*1000)%1000),
Here is the full version of the new FXPair
 class:
<?php
class FXPair{
 /** The name of the FX pair */
 private $symbol;
 /** The mean bid price */
 private $bid;
 /** The spread. Add to $bid to get "ask" */
 private $spread;
 /** Accuracy to quote prices to */
 private $decimalPlaces;
 /** Number of seconds for one bigger cycle */
 private $longCycle;
 /** Number of seconds for the small cycle */
 private $shortCycle;

 /** Constructor */
 public function __construct($symbol,$b,$s,$d,$c1,$c2){
 $this->symbol = $symbol;
 $this->bid = $b;
 $this->spread = $s;
 $this->decimalPlaces = $d;
 $this->longCycle = $c1;
 $this->shortCycle = $c2;
 }

 /** @param float $t Seconds since 1970, to microsecond accuracy */
 public function generate($t){
 $bid = $this->bid;
 $bid += $this->spread * 100 *
 sin((360 / $this->longCycle) * (deg2rad($t % $this->longCycle)));
 $bid += $this->spread * 30 *
 sin((360 / $this->shortCycle) *(deg2rad($t % $this->shortCycle)));
 $bid += (mt_rand(-1000,1000)/1000.0) * 10 * $this->spread;
 $ask = $bid + $this->spread;

 return array(
 "timestamp" => gmdate("Y-m-d H:i:s",$t).
 sprintf(".%03d", ($t*1000)%1000),
 "symbol" => $this->symbol,
 "bid" => number_format($bid, $this->decimalPlaces),
 "ask" => number_format($ask, $this->decimalPlaces),
);
 }

}
And here is the fx_server.milliseconds.php
 script that uses it:
<?php
include_once("fxpair.milliseconds.php");

header("Content-Type: text/event-stream");

$symbols = array(
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("USD/JPY", 95.10, 0.01, 3, 341, 55),
 new FXPair("AUD/GBP", 1.455, 0.0002, 5, 319, 39),
);

while(true){
 $sleepSecs = mt_rand(250,500)/1000.0;
 usleep($sleepSecs * 1000000);

 $t = microtime(true);
 $ix = mt_rand(0,count($symbols)-1);
 $d = $symbols[$ix]->generate($t);
 echo "data:".json_encode($d)."\n\n";
 @ob_flush();@flush();
 }
When we run fx_server.milliseconds.php, we now see
 something like this:

data:{"timestamp":"2014-02-28 06:49:55.081","symbol":"AUD\/GBP", ↵
 "bid":"1.47219","ask":"1.47239"}

data:{"timestamp":"2014-02-28 06:49:56.222","symbol":"USD\/JPY", ↵
 "bid":"94.956","ask":"94.966"}

data:{"timestamp":"2014-02-28 06:49:56.790","symbol":"EUR\/USD", ↵
 "bid":"1.30931","ask":"1.30941"}

data:{"timestamp":"2014-02-28 06:49:57.002","symbol":"EUR\/USD", ↵
 "bid":"1.30983","ask":"1.30993"}

data:{"timestamp":"2014-02-28 06:49:57.450","symbol":"EUR\/USD", ↵
 "bid":"1.30972","ask":"1.30982"}

data:{"timestamp":"2014-02-28 06:49:57.987","symbol":"AUD\/GBP", ↵
 "bid":"1.47235","ask":"1.47255"}

data:{"timestamp":"2014-02-28 06:49:58.345","symbol":"AUD\/GBP", ↵
 "bid":"1.47129","ask":"1.47149"}
In the book’s source code, there is a file called fx_client.basic.milliseconds.html that allows
 you to view this in the browser (Figure 3-2). Each time you
 run the script you will see the three currencies going up and down, and if
 watching paint dry is one of your hobbies you will probably quite enjoy
 this. And as long as you don’t mind watching it for at least six minutes
 (the length of the long cycle), this is also good enough for manual
 testing. But each time you run the script, the exact prices, the order in
 which the symbols appear, and of course the timestamps, are different.
 Refer back to Design for Testability for why we want to
 do something about this.
[image: fx_client with milliseconds, after running for a few seconds]

Figure 3-2. fx_client with milliseconds, after running for a few
 seconds

Taking Control of the Randomness

Note
The rest of this chapter is only backend enhancements; if you
 are more interested in the frontend, you could skip ahead to Chapter 4 now.

As an experiment, take your fx_server.milliseconds.php script and at the
 top add this one line: mt_srand(123);. This sets the
 random seed to a value of your choosing.
Stop it. Run it again. What do you notice? If you thought setting
 the seed would give you repeatable results, that must have come as a nasty
 shock. Everything is different. But look closely, and you’ll see the order
 of the ticking symbols is consistent: EUR/USD three times, then USD/JPY,
 then AUD/GBP, then USD/JPY three times.[15] That makes sense because the code to control the next symbol is simple randomness:
 $ix = mt_rand(0,count($symbols)-1);.
If you look really closely, you’ll also see
 that the difference between timestamps is almost the
 same. For example, I see a gap of 431ms on one run, 430ms on another run,
 and 431ms on a third try. This also makes sense because the time between
 ticks is also simple randomness:
 $sleepSecs=mt_rand(250,500)*1000;. The difference in timing
 is due to CPU speed, how busy the machine is at the time, and the flapping
 of the wings of a butterfly on the other side of Earth.
But why are the prices different? Because they are based on
 $t (the current time on the server), with just a little
 random noise added in. So we need to take control of $t. Now,
 was your first thought, “Let’s change the system clock, just before
 running each unit test”? I like your style. You are a useful person to
 have around when we have a wall to get through and the only tool we have
 is a sledgehammer. To be honest, I thought of it too.
But in this case there is an easier way to get through this
 wall—there is a door. And it was us who put it there earlier. I am talking
 about the way we pass $t to generate(), rather
 than having generate() call microtime(true)
 itself.
Just to get a feel for this, replace the $t =
 microtime(true); line with $t=1234567890.0;. Now it
 outputs:
data:{"timestamp":"2009-02-13 23:31:30.000","symbol":"EUR\/USD",↵
 "bid":"1.31103","ask":"1.31113"}
And it is that exact same line every time you run the script,
 regardless of the CPU, load, or insect behavior.
Obviously we do not want it to be February 13, 2009 forever. Here is
 the next version of our code, which gives us the option to take control of
 $t:
<?php
include_once("fxpair.milliseconds.php");

header("Content-Type: text/event-stream");

$symbols = array(
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("EUR/USD", 1.3030, 0.0001, 5, 360, 47),
 new FXPair("USD/JPY", 95.10, 0.01, 3, 341, 55),
 new FXPair("AUD/GBP", 1.455, 0.0002, 5, 319, 39),
);

if(isset($argc) && $argc>=2)
 $t = $argv[1];
elseif(array_key_exists("seed",$_REQUEST))
 $t = $_REQUEST["seed"];
else{
 $t = microtime(true);
 echo "data:{\"seed\":$t}\n\n";
 }
mt_srand($t*1000);

while(true){
 $sleepSecs = mt_rand(250,500)/1000.0;
 usleep($sleepSecs * 1000000);
 $t += $sleepSecs;

 $ix = mt_rand(0,count($symbols)-1);
 $d = $symbols[$ix]->generate($t);
 echo "data:".json_encode($d)."\n\n";
 @ob_flush();@flush();
 }
Compared to fx_server.milliseconds.php, the main change is
 the block of code just before the main loop. But, in fact, the code is
 quite mundane. If run from the command line
 (if(isset($argc)...), it gets the seed from the first
 command-line parameter; if run from a web server, it looks for
 input[16] called seed and uses that ($_REQUEST['seed'];). And when neither are
 set, it initializes from the current time, and then it outputs a line to
 say what seed it is using. This last point is so that if something goes
 wrong you have the seed to reproduce the stream of data. Once we’ve got
 our random seed, we call mt_srand from one of those three
 places. We multiply $t by 1,000; mt_srand will
 truncate it to an int, so this is our way of saying we care about
 millisecond accuracy, but not microsecond accuracy.
In our main loop, the changes are simple.
 $t=microtime(true); has been removed from the start of the
 loop, and at the end of the loop, $t is incremented by the
 number of seconds we slept. In other words, if $t is
 1234567890.0, meaning we are pretending it is 2009-02-13
 23:31:30.000, and then we sleep for 0.325 seconds, we update
 $t such that we now pretend the current time is 2009-02-13 23:31:30.325.

Making Allowance for the Real Passage of Time

What a fun section title! As far as unit testing goes, the code at the end of
 the previous section is good enough. But did you try using it without a
 random seed? To make what is happening clear, I added this[17] just above the line that starts echo
 "data:"...:
$now=microtime(true);
echo ":".
 gmdate("Y-m-d H:i:s",$now).
 sprintf(".%03d",($now*1000)%1000).
 "\n";
Starting a line with a colon is a way to enter a comment in SSE. You
 cannot access comments from a browser, so run this from the command line.
 At the start, you will see $now and $t are in
 sync. But after a few ticks, $now might be a few milliseconds
 slower. Go put the kettle on, and when you come back the gap will be in
 the hundreds of milliseconds. Run it for 24 hours and it will be minutes
 wrong. (By the way, the problem exists when you give a seed too; it is
 just harder to spot.)
Well, it is just test data, it doesn’t really matter. But adjusting
 sleep to match the passage of time is a tool you might need in your
 toolbox, so let’s quickly do it.
We will use a variable, $clock, to store the server
 clock time. That is initialized to the current time at the start of our
 script. But the real action is at the end of the main loop.
 $now=microtime(true); is back! Then we calculate the time
 slip with $adjustment = $now - $clock;. The key concept is
 when we go to sleep, we sleep for a bit less than we thought we wanted
 to:
usleep(($sleepSecs - $adjustment) * 1000000);
$t is updated as before, i.e., $sleepSecs
 without using $adjustment. But then we also update
 $clock in exactly the same way. $clock
 represents the time we expect the server clock to have if we are running
 on an infinitely fast processor.
The full code for fx_server.adjusting.php is shown in the
 following code block, and you can find fx_server.adjusting_with_datestamp.php in the
 book’s source code, which uses SSE comments again to show that the
 artificial data is spit out at exactly the same pace as the real passage
 of time. You will also find fx_client.basic.adjusting.html, which connects
 to it (this version displays the seed that was chosen), and fx_client.basic.adjusting123.html, which sets
 an explicit seed, and thus shows repeatable data each time you
 reload.
<?php
include_once("fxpair.milliseconds.php");

header("Content-Type: text/event-stream");

$symbols = array(
 new FXPair('EUR/USD', 1.3030, 0.0001, 5, 360, 47),
 new FXPair('EUR/USD', 1.3030, 0.0001, 5, 360, 47),
 new FXPair('USD/JPY', 95.10, 0.01, 3, 341, 55),
 new FXPair('AUD/GBP', 1.455, 0.0002, 5, 319, 39),
);

$clock = microtime(true);
if(isset($argc) && $argc>=2)
 $t = $argv[1];
elseif(array_key_exists('seed',$_REQUEST))
 $t = $_REQUEST['seed'];
else{
 $t = $clock;
 echo "data:{\"seed\":$t}\n\n";
 }
mt_srand($t*1000);

while(true){
 $sleepSecs = mt_rand(250,500)/1000.0;
 $now = microtime(true);
 $adjustment = $now - $clock;

 usleep(($sleepSecs - $adjustment) * 1000000);
 $t += $sleepSecs;
 $clock += $sleepSecs;

 $ix = mt_rand(0,count($symbols)-1);
 $d = $symbols[$ix]->generate($t);
 echo "data:".json_encode($d)."\n\n";
 @ob_flush();@flush();
 }

Taking Stock

We covered a lot of ground in this chapter. Step by step, we
 designed a random data backend that incorporates Design for Testability
 principles (while learning a little about how FX markets work), then
 pushed that data to clients using SSE. But our development was quite
 rapid, so the next chapter will start with some refactoring, and then it
 will add some data storage features.

[13] Every browser that supports SSE has JSON.parse.
 However, when we talk about fallbacks for older browsers we will find
 JSON.parse is not available in really old browsers, most
 notably IE6/IE7. There is a simple way to patch it, though.

[14] DOM IDs in HTML5 can contain just about anything except
 whitespace. However, if you need this code to run on HTML4 browsers
 such as IE7 or IE8, you will need to sanitize the symbol names that
 the data feeds gives you. For example, convert all nonalphanumerics to
 “_”, and make the DOM IDs "USD_JPY",
 "EUR_USD", etc. (Also make sure a digit is not the
 first character, and for IE6 (!!) support, make sure an underline is
 also not the first character.)

[15] The exact random sequence, for a given seed, might change
 between PHP versions, and possibly between OSes. I used PHP 5.3 on
 64-bit Linux when writing this.

[16] Yes, I’m using $_REQUEST deliberately, so it can
 come from GET, POST, or even cookie data. In this particular case,
 being able to set the random seed from a cookie is a feature, not a
 bug! See Superglobals in Appendix C for more on PHP superglobals.

[17] You’ll find this in the book’s source code as fx_server.repeatable_with_datestamp.php.

Chapter 4. Living in More Than the Present Moment

We are doing well. We now have a fairly sophisticated server, which is
 relatively easy to test, and a basic frontend so at least we can see it is
 working. It is almost time to restore the balance and improve that frontend,
 too. But before we return our attention back to the frontend, there is one
 more change I want to make on the backend. It is a change to the structure
 of our data, and therefore will break compatibility with the
 fx_client.basic.*.html files we’ve seen
 previously.
More Structure in Our Data

Currently each JSON record is one tick, one item of data. The main change
 we will make is in allowing multiple rows of data to be passed. We also
 had a couple of “header” fields: one the name of the symbol, the other a
 server timestamp. So our data structure will become like
 this:
	symbol:string
	timestamp:string (“YYYY-MM-DD HH:MM:SS.sss”)
	rows:array

And each row in the rows container has this
 structure:
	timestamp:string (“YYYY-MM-DD HH:MM:SS.sss”)
	bid:double
	ask:double

Why are we doing this? One reason is to be ready for if/when we have
 arrays of data to send (for instance, supporting historical data
 requests). Of course, we could just send each row as its own row of JSON;
 doing it that way adds a few bytes, perhaps a dozen bytes per row. A
 better reason is we are telling the client this is a logical block of
 data. Our message callback is called for each SSE message we send; chances
 are your application will update the display after each. If we send a few
 hundred rows as a block, the client can process them as a block, and then
 just update the display once at the end.
Another reason for doing this is that it gives us a bit more
 flexibility. We could add a type field to change the meaning of
 rows, perhaps to say it is gzipped CSV, not a JSON array. It
 allows us to add a version number. Who knows what we will want to do in
 the future?[18]
After all that chat, the code for the change is quite small; it only
 affects the generate() function in our
 FXPair class. Relative to fxpair.milliseconds.php, the second half of the
 generate() function in fxpair.structured.php looks like this:
$ts = gmdate("Y-m-d H:i:s",$t).sprintf(".%03d", ($t*1000)%1000);
return array(
 "symbol" => $this->symbol,
 "timestamp" => $ts,
 "rows" => array(
 array(
 "timestamp" => $ts,
 "bid" => number_format($bid, $this->decimal_places),
 "ask" => number_format($ask, $this->decimal_places),
)
)
);
Note
In PHP, an array with named keys is called an associative array;
 it will become an object in the JSON. An array with no keys (as here),
 or numeric keys, will become an array in the JSON.

Notice that I set the timestamp of the message, and the timestamp
 of the data, to be the same. They need not be the same, though: the
 timestamp in the rows might have come from a stock exchange and have the
 official exchange timestamp on it, so it might be a few milliseconds
 earlier than the message timestamp. Or if it is historical data, it might
 be months or years earlier.

Refactoring the PHP

The PHP script is under 40 lines, so there is not really that much to
 refactor. But I’m betting that seeing this block of code over and over is
 starting to set your teeth on edge:
$d = $symbols[$ix]->generate($t);
echo "data:".json_encode($d)."\n\n";
@ob_flush();@flush();
So I will replace it with this:
sendData($symbols[$ix]->generate($t));
And
 the implementation of sendData() is simple:
function sendData($data){
echo "data:";
echo json_encode($data)."\n";
echo "\n";
@flush();@ob_flush();
}
(Splitting it into three echo commands is not actually to make it
 fit this book’s formatting; it is ready for the change we will make in
 Chapter 6. Here is a hint: the middle line is the actual
 data, whereas the “data:” prefix and the extra LF are the SSE
 protocol.)
You can see this change in the book’s source code: fx_server.structured.php; the only other change
 is to include fxpair.structured.php
 instead of fxpair.milliseconds.php.

Refactoring the JavaScript

Our current JavaScript is all of six lines. But to take this further, it will help to
 have some structure; some of the design decisions we make here are also
 preparing the way for the fallbacks for older browsers.
First up, we need a couple of globals:
var url = "fx_server.structured.php?";
var es = null;
Note
Why do we put the question mark at the end of the URL? Later we will want to append values to
 the URL, and doing it this way allows us to append without having to
 know if we are the first parameter (which has to be prefixed with
 ?) or one of the later ones (which need to be prefixed with
 &).

We would like to move the call to create the
 EventSource object into a function called
 startEventSource(), which looks like this:
function startEventSource(){
if(es)es.close();
es = new EventSource(url);
es.addEventListener("message", function(e){processOneLine(e.data);}, false);
es.addEventListener("error", handleError, false);
}
We will write that handleError function in the next
 chapter; for the moment, just write:
function handleError(e){}
Next we are going to wrap the call to
 startEventSource() in a function called connect,
 so it looks like this:
function connect(){
if(window.EventSource)startEventSource();
//else handle fallbacks here
}
You may have heard that all problems in programming can be solved by
 adding another layer of indirection. Well, obviously we are adding a layer
 of abstraction here…so what is the problem we are solving? Again it is for
 the fallback support: code that will be used by all techniques (e.g.,
 keep-alive) goes in connect(), as well as the detection of
 which technique to use. Code specific to using SSE goes in
 startEventSource().
Then, to get everything rolling, we will call connect()
 once the page has loaded. The simplest way is to put this code in a
 <script> block at the very bottom of the page:
setTimeout(connect, 100);
If you are using JQuery, the following way may be more familiar (and
 you can put this code anywhere if done this way; it does not need to go at
 the bottom):
$(function(){ setTimeout(connect, 100); });
Note
We use a 0.1s timeout because some versions of some browsers
 need it. For instance, on some versions of Safari, without using a timeout you might see a permanent
 “loading” animation. I hate the “magic number” of 100ms, but it
 appears to be sufficient.

The other refactor we did was to
 move our processing to its own function,
 processOneLine(s),
 which takes a single line of JSON as the parameter:
function processOneLine(s){
var d = JSON.parse(s);
if(d.seed){
 var x = document.getElementById("seed");
 x.innerHTML += "seed=" + d.seed;
 }
else if(d.symbol){
 var x = document.getElementById(d.symbol);
 for(var ix in d.rows){
 var r = d.rows[ix];
 x.innerHTML = r.bid;
 }
 }
}
This function also shows how we handle the change in the JSON format, described in the previous section. I am using a
 loop here to show how to process each row in the received data. In this
 case, each row updates the same div so, effectively, only the
 last row of data is being used. But most of the time you will care about
 all the data, and want to use a loop.
See fx_client.basic.structured.html for the file
 after all this refactoring. It behaves exactly like the previous version
 (fx_client.basic.adjusting.html), the
 goal of any good refactoring session. Never mix adding features with
 refactoring.
By the way, when you are actually only interested in the final row
 of data, that whole block can be written as:
var x = document.getElementById(d.symbol);
x.innerHTML = d.rows[d.rows.length - 1].bid;
You can do this because d.rows is an array, not an
 object. If d.rows was an object (e.g., with timestamps
 as the keys) you would always have to use the loop. Speaking of which,
 because d.rows is an array, you could also write the main
 loop this way:
for(var ix = 0;ix < d.rows.length;++ix){
 var r = d.rows[ix];
 x.innerHTML = r.bid;
 }

Adding a History Store

In our application, we currently use each value as we get it, but
 then we forget about it. If we instead keep a record of everything we
 receive, it creates new possibilities. For instance, we could make a
 tabular view of all data received in the last 5 minutes or 24 hours. Or we
 could make a chart.
Let’s start by adding this global variable to store the history for
 all our symbols:
var fullHistory = {};
It is an object in JavaScript, but we will use it as an associative array
 (aka map, dictionary, hash, key-value pair store); the
 key will be the symbol name, and the
 value will be another associative array. Then when we
 get a line of data (one JSON record, which contains one or more rows of
 data), we do:
if(!fullHistory.hasOwnProperty(d.symbol))
 fullHistory[d.symbol] = {};
That just creates an entry (an empty JavaScript object) for a
 particular feed, the first time we see it. Then, to fill it, we use
 something like:
for(var ix in d.rows){
 var r = d.rows[ix];
 fullHistory[d.symbol][r.key] = r.value;
 }
That code snippet assumes a key field and a
 value field in each row. In our code r.timestamp
 will be the key, and the value will be set to an array of two values:
 [r.bid,r.ask]. So, in full, our new
 processOneLine(s) function becomes:
function processOneLine(s){
var d = JSON.parse(s);
if(d.seed){
 var x = document.getElementById("seed");
 x.innerHTML += "seed=" + d.seed;
 }
else if(d.symbol){
 if(!fullHistory.hasOwnProperty(d.symbol))fullHistory[d.symbol] = {};
 var x = document.getElementById(d.symbol);
 for(var ix in d.rows){
 var r = d.rows[ix];
 x.innerHTML = d.rows[ix].bid;
 fullHistory[d.symbol][r.timestamp] = [r.bid,r.ask];
 }
 update_history_table(d.symbol);
 }
}
If we want to take that history store, and show the most recent 10
 items as an HTML table for one of the symbols, how do we do it? The
 following function makes a table for one symbol:
function makeHistoryTbody(history){
var tbody = document.createElement("tbody");
var keys = Object.keys(history).sort().slice(-10).reverse();

var timestamp, v, row, cell;
for(var n = 0;n < keys.length;n++){
 timestamp = keys[n];
 v = history[timestamp];
 row = document.createElement("tr");

 cell = document.createElement("th");
 cell.appendChild(document.createTextNode(timestamp));
 row.appendChild(cell);

 cell = document.createElement("td");
 cell.appendChild(document.createTextNode(v[0]));
 row.appendChild(cell);

 cell = document.createElement("td");
 cell.appendChild(document.createTextNode(v[1]));
 row.appendChild(cell);

 tbody.appendChild(row);
 }
return tbody;
}
So we create an HTML DOM tbody object, then grab the
 keys of the most recent 10 entries in our data history. (The
 reverse() at the end puts the most recent quote at the top of
 our table.) Then we loop through them, create a table row for them, append
 three table cells to the row, and then append the row to the
 tbody, which we return.
The final link is to replace the currently displayed
 tbody with our new one. This function does that:
function updateHistoryTable(symbol){
var tbody = makeHistoryTbody(fullHistory[symbol]);
var x = document.getElementById("history_" + symbol);
x.parentNode.replaceChild(tbody, x);
tbody.id = x.id;
}
The final file, fx_client.history.html, uses some CSS and some
 responsive web design principles so it will look good and use the space
 effectively on both mobile and desktop. Figures 4-1, 4-2, and 4-3 show how it looks just after being
 loaded, after a few seconds, and after running for a while,
 respectively.
[image: fx_client.history.html, just after starting]

Figure 4-1. fx_client.history.html, just after starting

[image: fx_client.history.html, after running for about 5 seconds]

Figure 4-2. fx_client.history.html, after running for about 5
 seconds

[image: fx_client.history.html, after running for some time]

Figure 4-3. fx_client.history.html, after running for some time

I’m not going to go into the CSV and web design, because it is
 off-topic for this book, but let’s just look at one of the three
 tables:
<table class="price-table">
 <caption>USD/JPY</caption>
 <thead>
 <tr>
 <th>Timestamp</th>
 <th>Bid</th>
 <th>Ask</th>
 </tr>
 </thead>
 <tbody id="history_USD/JPY"></tbody>
</table>
Each table has a static caption and header, and then we give the
 tbody an id so that we can find it
 and replace just that part of the table.
Note
Object.keys is available in all browsers where SSE is also available, so no problem
 there. However, when we start adding fallbacks we will need a polyfill for IE8 and
 earlier. We will introduce the polyfill when we first need it. Be
 aware that the polyfill is slower: it is an O(n)
 algorithm (where n is the number of keys), whereas a
 native Object.keys
 should be O(1).

One final word of caution: as you watch this page chug away, busily
 updating itself, remember we are deliberately only showing the last 10
 quotes for each symbol. But we are storing all the
 quotes ever received in memory. You need to balance functionality against
 the client’s resources (available memory in this case). If you know you’ll
 never need them all, consider truncating the fullHistory
 object at regular intervals.

Persistent Storage

The previous section showed how we can store all the data that is
 streamed to us, opening up a world of possibilities: tables, real-time
 charts, client-side analysis using the latest machine learning
 technologies, and so on. You could be beating the markets without ever
 having to leave the browser…until you close the browser, that is. Then all
 that downloaded data, and all your calculations, disappear down the
 drain.
HTML5 technologies to the rescue! In fact, we have a choice. However,
 FileSystem is not widely implemented yet, and neither is IndexedDB (though
 a polyfill is available that extends its reach a bit). So we will go with
 Web Storage. Some common restrictions for all of these new HTML5 storage
 APIs is that the user’s permission is needed to approve the storage, and
 that the storage is by origin. We will look at the
 exact definition of an origin in Chapter 9, but the idea
 is that an application running at http://example.com/
 cannot see data created by an application running at
 http://other.site/.
Web Storage is more commonly known as localStorage. This
 allows us to store name/value pairs, and typically browsers will give an
 application 5MB of storage. The best thing about Web Storage is it is
 available just about everywhere—IE8 onward (polyfill available for IE6 and IE7), Firefox since 3.5,
 Chrome since forever, Safari4 onward, Android 2.1 onward, and Opera 10.5
 onward (see the
 Can I Use Web Storage? page).
The downside is that it doesn’t take structured data, only strings.
 This means our history object has to be converted to a string using JSON.stringify(). That is a bit
 inefficient, and if we start to deal with lots of data, there is also the
 memory and CPU time required to convert between them.
The code to use Web Storage is quite straightforward, requiring just
 two changes to our existing code. First, to save the data, insert this
 line in processOneLine(s):
function processOneLine(s){
var d = JSON.parse(s);
...
else if(d.symbol){
 if(!fullHistory.hasOwnProperty(d.symbol))fullHistory[d.symbol] = {};
 ...
 updateHistoryTable(d.symbol);
 localStorage.fullHistory = JSON.stringify(fullHistory);
 }
}
Yes, it is that simple. JSON.stringify() turns our
 fullHistory object into a string. The assignment to
 localStorage.XXX either creates the XXX key or replaces it.
 You could also write this as localStorage.setItem("fullHistory",
 JSON.stringify(fullHistory));.
Be aware of what is happening here: every time a single piece of data comes
 through, our entire history is being turned into a string, replacing what
 is already there. In one of my tests, after an hour or so Firefox was
 using 25% of one CPU (compared to 4% at the start), and the string being
 made was 500KB in length. Those aren’t fatal numbers, but after a few more
 hours they would be.
Optimizations
There are two independent optimizations possible. You could split the
 data by symbol. So the line would change to:
localStorage.setItem("fullHistory." + d.symbol,
 JSON.stringify(fullHistory[d.symbol]));
We have three
 symbols, so this means each string is 1/3 of the original size, which
 effectively means if the failure point was previously 4 hours, it is now
 12 hours. You could take this idea further by putting part of the
 datestamp in the key name. For example, each hour’s data could end up in
 its own bucket. This adds quite a bit of complexity though, because you
 now will need another localStorage entry to keep
 track of which time periods you have data stored for. (Alternatively,
 the localStorage API provides a way to iterate
 through all stored data: for(var ix = 0; ix
 < localStorage.length; ix++){var key = localStorage.key(i); ...
 } .)
The other optimization is to save the data on a 30-second timer
 using setInterval, instead of each time we get data. This
 definitely reduces overall CPU usage, but remember that instead of, say,
 a constant 100% CPU usage, after a certain amount of time, you will get
 a 100% CPU burst every 30 seconds. The other thing to remember is that
 when the browser closes, then up to 30 seconds worth of data gets
 lost.

The other change needed in our code is to use the persistent
 storage. At the top of connect() these lines are
 added:
function connect(){
if(localStorage.fullHistory){
 fullHistory = JSON.parse(localStorage.fullHistory);
 updateHistoryTable("USD/JPY");
 updateHistoryTable("EUR/USD");
 updateHistoryTable("AUD/GBP");
 }
if(window.EventSource)startEventSource();
//else handle fallbacks here
}
This is simply the reverse of how the data was saved, using
 JSON.parse instead of JSON.stringify. It could
 also have been written fullHistory =
 JSON.parse(localStorage.getItem("fullHistory"));.
The other three lines update the display with the previously stored
 data.
If it does not work, check your browser settings. In some browsers
 the policy of what is allowed is shared with cookies, so you may need to
 allow cookies to be stored too. If it is working when you click the
 browser’s reload button, but not working after closing all browser
 windows, check for privacy settings that say all cookies should be deleted
 at the end of a browser session.
Note
To delete the data, it is as simple as
 localStorage.removeItem('fullHistory');. If you
 implemented the idea of splitting the data into hourly buckets,
 mentioned in the sidebar Optimizations, then you
 could use this to just delete the oldest data.

How much data can you store? It is browser-specific, but
 generally you can expect at least 5MB (about 11 to 12 hours for our FX
 demo application). What happens when you reach the limit? Typically the
 setItem() call will fail, throwing a
 QUOTA_EXCEEDED_ERR exception that you could catch and deal with. The previously stored
 data for that key is kept. The Opera browser will first pop up a dialog giving the user the
 chance to allow more storage. Firefox has the dom.storage.default_quota key
 (found in about:config), which a user could first edit.
How to Reduce the Size of the Data?
One idea is to compress the JSON string before storing it. A web search
 will find zip, gzip, and LZW implementations in JavaScript. JSON
 compresses well.
You could also try summarizing the data instead of storing the raw
 data. This is lossy compression, rather than the lossless
 compression suggestions of the previous paragraph. For instance, in a
 finance application, it is very common to turn raw ticks into bars. So a
 one-minute bar will just store the opening price, closing price, high
 and low price, and the volume or number of ticks for each 60-second
 period. With some careful planning you can have almost constant space
 usage. For instance, you could store 10 minutes of raw data, two hours’
 worth of one-minute bars, one week’s worth of hourly bars, and years
 worth of daily bars.
The downside to both ideas is the extra CPU load and the extra
 complexity.

Now We Are Historians…

This chapter started by improving the structure of the code that
 Chapter 3 left us with. Then we built on our new base to
 learn how to store a history, and display both the latest prices and a
 subset of that history. Then we looked at how to integrate this with
 another HTML5 technology, Web Storage, so clients can have a persistent
 data cache. We are now done with features, and the next chapter is all
 about making our application
 production-quality.

[18] We already did this earlier, in an ad hoc way, when we sent an
 SSE message that specifies the chosen seed and nothing
 else.

Chapter 5. No More Ivory Tower: Making Our Application
 Production-Quality

In the previous couple of chapters we created a backend that pushes
 out FX prices for multiple symbols, and a frontend that displays them in any
 browser that supports SSE. One way we need to improve this application is by
 getting it to work in older desktop and mobile browsers that do not have SSE
 support. But there is another axis we need to improve in, because at the
 moment I still regard this as a toy example. It is not
 production-quality yet.
What do I mean by production-quality? Quite a few things. I mean that
 when things go wrong the system will recover automatically. I mean it works
 with real-world constraints (the one we will show in this chapter is dealing
 with the FX market shutting down on weekends). And I mean dealing with the
 case where we sent out bad data by mistake and now need to fix it.
Error Handling

In Chapter 4, we attached an event handler
 for the error message. We named that function
 handleError, and now we have to decide what is going to go
 into it. By the end of this chapter we will be auto-reconnecting whenever
 the backend server goes down. We will also keep trying to connect if it is
 not available. But we will be doing these things with or without an
 error callback. The error callback is just
 informative—only of interest to programmers, not to end users. So we might
 as well make it as simple as:
function handleError(e){
console.log(e);
}
I said “informative.” I was exaggerating. The object has no message, no
 error code. The only slightly useful thing is the target
 element. This is your EventSource object. Inside it you will
 find the URL you connected to, and an element called
 readyState (or, in full,
 e.target.readyState). If readyState is 2,
 it means “CLOSED.” This means your URL is bad— a connection could not be
 made. If readyState is 0, it means “CONNECTING,” and
 that means you had a connection, but it got closed and the browser is
 trying to auto-reconnect. And if readyState is 1, or
 “OPEN,” by the time you look at it, it means the reconnect already
 happened.

Bad JSON

If the server sends a JSON string that isn’t a JSON string, or is badly
 formatted (sometimes even as much as a stray comma or line feed), the
 browser might throw an exception. This will stop everything from working.
 And that is bad. So, instead of just writing var d =
 JSON.parse(s);, this is the production-quality approach:
try{
 var d = JSON.parse(s);
}catch(e){
 console.log("BAD JSON:" + s + "\n" + e);
 return;
}

Adding Keep-Alive

I can sometimes go weeks, even months, without any really important news I need to
 tell Mum. But how can she tell the difference between me having no news,
 me forgetting to pay my ISP and phone company, and me having been hit by a
 fiery comet and lying in a hospital? So, every now and again I email Mum
 to tell her: “Bills paid, no fiery comets.” Or more simply: “I’m
 alive.”
In network terms, keep-alive is a packet of data that is sent every
 N seconds, or after N seconds of
 inactivity on a socket, just to let the other end of the socket know that
 everything is OK and that there simply hasn’t been anything to
 communicate. (You will also see this concept referred to as a heartbeat.)
 Some browsers might kill a connection and auto-reconnect after so many
 seconds of socket inactivity. In addition, proxy servers might kill a
 connection if it goes quiet. So we’re going to send keep-alive messages
 every 15 seconds to prevent this from happening. Why 15? The SSE draft
 proposal mentions that number. It is probably more frequent than is really
 needed, but on the other hand, it is not frequent enough to ever likely be
 the bottleneck of your system.
So, that decides N. The other design decision
 we have is whether we send the keep-alive every 15
 seconds, or only after 15 seconds of quiet. It is not a very important
 decision, so I suggest you do whichever is easiest to code on the server
 side for you.
Be aware that keep-alives could affect TCP/IP bandwidth shaping, and
 in particular its Slow-Start Restart mechanism. My advice: don’t worry
 about it. If the difference between a 15-second, 30-second, or 90-second
 SSE keep-alive is having a significant effect on your network load, there
 could be bigger problems elsewhere. (For starters, why do you have so many
 SSE connections that are not sending any real data?) Alternatively, you
 could configure your server to not use slow-start (it is an OS-level
 setting).
With mobile, keep-alive brings other considerations. For instance,
 the keep-alive might be stopping the application from going to sleep, thus
 draining the battery rapidly. If your data is naturally infrequent, but is
 also predictable, consider using setTimeout to fetch
 data, instead of streaming it.
Server Side

The keep-alive can be as simple as sending a blank SSE comment line. How do we do
 that? It is just a line that starts with a colon. You may remember we
 used SSE comments to add some troubleshooting output in the section
 Making Allowance for the Real Passage of Time. Here’s an
 example:
echo ":\n\n";@flush();@ob_flush();
Alternatively, we could send a blank data message:
echo "data:\n\n";@flush();@ob_flush();
What is the difference between sending an SSE comment line and
 sending an SSE data line? On the server side it is four bytes, but on
 the client side there is all the difference in the world. The latter
 triggers the EventSource message handler, and the
 former does not.[19] We want the latter, for reasons we will cover later when
 talking about client-side handling.
So, if we are going to send a real data packet, let’s also include
 a timestamp (this can then be used to identify clocks that
 are out of sync or suspiciously large latency between server and
 client). Because we are using JSON for our messages, it is no trouble to
 also identify the message as a keep-alive, as follows:
sendData(array(
 "action" => "keep-alive",
 "timestamp" => gmdate("Y-m-d H:i:s")
));
You can find an example using this in the sample code for the
 book: fx_server.keepalive.php.
 Because our application is constantly sending data, there would never be
 15 seconds of quiet, and so we would never get chance to send a
 keep-alive. (Basically, the keep-alive concept is pointless for our
 particular application.) But to allow us to test it on the frontend, we
 use the regular send pattern. We do this by
 initializing $nextKeepalive = time() + 15; just before
 entering the main infinite loop. Simply put, that line says send the
 next keep-alive message 15 seconds from now. Then the start of the main
 loop, just after the sleep, now looks like:
while(true){
 ...
 if(time() > $nextKeepalive){
 sendData(array(
 "action" => "keep-alive",
 "timestamp" => gmdate("Y-m-d H:i:s")
));
 $nextKeepalive = time() + 15;
 }
 $ix = mt_rand(0, count($symbols)-1);
 ...
To change it to only send after quiet periods, simply run
 $nextKeepalive = time() + 15; after sending real data
 too.

Client Side

SSE already has a reconnect function built into the protocol. So, in that
 sense, we don’t strictly need keep-alive handling. Just sending an SSE
 comment (see the previous section) will be enough to keep the TCP/IP
 socket alive. And if that socket dies, the browser should automatically
 reconnect. There are two reasons we choose not to rely on that
 functionality. The first is that the browser will only reconnect if the
 socket dies nice and cleanly and immediately, like an extra in an action
 movie. However, sometimes sockets can die like the hero in an action
 movie. And just like in the movie, it might be 30, 60, or even 120
 seconds from when the socket stops working to the browser being sure it
 is dead. Bugs in your backend code can cause a similar problem. The
 second reason is nice and simple: we want our code to work with the
 fallbacks, too. That is why we send a keep-alive as a proper message
 that can be processed in our JavaScript.
First we need to define a couple of global variables in our
 JavaScript:
var keepaliveSecs = 20;
var keepaliveTimer = null;
The first decides how sensitive we want to be. The correct value
 is to match the pace of the keep-alive messages that the backend sends.
 We chose 15 seconds for our backend; I like to add a bit of buffer, to
 allow for network latency and other delays on both the front and
 backends, which is why I have chosen 20 seconds.
keepaliveTimer is the handle of a
 setTimer() call. We create this timer when we do the
 initial connect. Then, whenever data comes through from the server we
 kill the old timer and create a new one. So, as long as data (whether
 real data or a keep-alive message) keeps coming through regularly, the
 timer will always be killed before it gets a chance to trigger. Only
 when no data comes through for a period of 20 seconds will the timer
 finally get a chance to trigger. And that can only mean there is a
 problem somewhere, because keep-alive messages are supposed to be
 received every 15 seconds.
In code that looks like this:
function gotActivity(){
if(keepaliveTimer != null)clearTimeout(keepaliveTimer);
keepaliveTimer = setTimeout(connect, keepaliveSecs * 1000);
}
The second parameter to setTimeout is given in
 milliseconds, hence the multiply by 1,000. The first parameter is the
 function to call after the timeout, so it will call connect() if no keep-alive is
 received. You remember that we have a function called
 connect that previously looked like this:
function connect(){
if(window.EventSource)startEventSource();
//else handle fallbacks here
}
To start things going we just add one line at the top, so it looks
 like:
function connect(){
gotActivity();
if(window.EventSource)startEventSource();
//else handle fallbacks here
}
This is very important: without it, a connection that went wrong
 (that never sent any data) would go unnoticed. It goes at the start just
 in case startEventSource() throws an exception, and the end
 of the function is not reached.
Are you concerned we don’t kill the old connection in
 connect()? We leave that job to
 startEventSource() (and we already handle it: seeRefactoring the JavaScript). The way to kill the connection
 varies depending on the fallback we are using.
There is one final piece to add. At the very top of
 processOneLine(s) we add a call to
 gotActivity():
function processOneLine(s){
gotActivity();
var d = JSON.parse(s);
...
It does not matter if it is a keep-alive, regular data, or
 anything else. Ending up in processOneLine(s) is a sign of
 getting a message. The fallbacks we look at in the next two chapters
 will also use connect() and processOneLine(s),
 so there will be no changes to this code for them to support
 keep-alives. Try out fx_client.keepalive.html to see it in action;
 Figure 5-1 shows how it will look after a couple of
 keep-alives have come through.
[image: fx_client.keepalive.html after running for about 35 seconds; two keep-alives have come through]

Figure 5-1. fx_client.keepalive.html after running for about 35 seconds;
 two keep-alives have come through

Another Way to Do Keep-Alives
Our current keep-alive solution kills and re-creates a timer every single time we get
 new data. An alternative approach is to just record the timestamp of
 the latest data. This then (for instance) could require a
 once-every-four-second timer. Each time that timer triggers, it checks
 to see how long it has been since we got real data; when that is over
 20 seconds, it assumes that the server has died, at which point it can
 try to reconnect.
This approach has some downsides. It needs a couple more globals
 (var keepaliveTimerSecs=4;, var
 lastTimestamp=null;). It needs about double the number of lines
 of code. And it becomes less precise: when the server goes down it
 will be between 20 and 24 seconds before we notice. The way it was
 shown previously, we will notice exactly 20 seconds after the last
 received message.
There must be some advantage to doing it this way, right? Yes,
 updating a timestamp each time we get data is quicker than killing and
 starting a timer. This extra CPU load comes just when we want it
 least: when we are getting a burst of very rapid data, and already had
 more than enough to do, thank you very much for asking.
The first draft of this chapter did it this way in the main
 text, and the simpler version was in this sidebar. However, I got
 suspicious and went away to benchmark the difference. In Chrome (well, actually WebKit/PhantomJS), the stop-start
 of the timers took 14 to 17 times longer than just assigning the
 current timestamp. In Firefox, the difference was even bigger: about
 250 to 350 times slower! Aha, so my hunch was right! Very gratifying.
 Then I took a step back. I had got caught up in a micro-optimization.
 Say we receive 100 messages/second, which can be considered a very
 busy feed. My benchmarking told me that 100 stop-starts of a timer
 takes about 6ms, so with 100 messages/second that equates to about
 0.6% of one CPU core.
Conclusion: the simpler keep-alive processing is never going to
 be the bottleneck.

SSE Retry

SSE has its own stay-connected functionality. How does that work, and how does our code
 interact with it? The built-in reconnect of SSE is working at the socket
 level. If the socket is closed by the server, the browser will perform
 these steps:
	Set readyState (an element of our
 EventSource object) to CONNECTING.

	Call our error handler (see Error Handling).

	Wait retry seconds, and then connect
 again.

Who decides how long that retry delay is? The default is decided
 by your browser,[20] and is going to be about 3–5 seconds. What that means is
 that if the connection goes down due to a closed socket, the restart
 will happen before our keep-alive code gets a chance to notice. So there
 will not be any clash. The SSE restart will handle everything; our
 keep-alive restart will never be used.
Well, if SSE has this retry code built in, why did we bother
 writing our own keep-alive system? Good question. First, we will need it
 for the fallbacks that we will be looking at in the next two chapters.
 But even if we control the ecosystem and know all our browsers have
 EventSource support, we still need this code. The SSE
 reconnect only handles one of the things that can go wrong: the socket
 gets closed. There are other ways a data feed can stop working. Sockets
 can die in a way that is not noticed. The backend script could crash in
 a way that does not cleanly close the socket. It might enter an infinite
 loop. There could be a browser bug or a server bug. Luckily, our
 explicit keep-alive system takes care of all of these. But the most
 important one it takes care of is the case where the server is offline.
 When the web server cannot be reached, or sends back a 404, or is not
 configured for CORS correctly, SSE changes the readyState
 to CLOSED, and does not try again. Ever. Our explicit keep-alive system
 will retry every 20 seconds.
Going back to SSE retry, the default wait of 3–5 seconds is quite
 short. If your server is likely to close the connection a lot and does
 not want frequent reconnections, it can set the retry time higher.
 Conversely, if you want it shorter, to reduce downtime when something
 goes wrong, you can set a lower number.[21] The way you do this is by sending a special SSE
 line:
retry: 10000
It is in milliseconds, so 10,000 means 10 seconds. I suggest you
 never set this higher than the rate at which you send keep-alives. For
 instance, if you set retry to 20000, then I suggest you have your server
 send keep-alives at 25- or 30-second intervals. (But don’t go much
 higher than that or the browser and intermediaries, such as proxies,
 load balancers, etc., might start interpreting quietness as a lost
 connection.) And remember if you increase that interval on the server,
 you must increase keepaliveSecs in the JavaScript,
 too.
Perhaps we should take inspiration from the SSE retry, and
 implement our own protocol so that the server can also state the rate at
 which it is sending keep-alive messages, and we adjust
 keepaliveSecs automatically to match? It is a great idea
 for when the server is getting overloaded: dynamically tell clients to
 back off a bit. In reality, if you space the keep-alive messages out too
 far, the browser (or intermediaries) will think there is a problem, kill
 the socket, and will try to reconnect, thus creating more overall load.
 So you are only left with a range of about 15 to 40 seconds within which
 you can adjust. That makes little difference and is not worth the extra
 complexity involved.
In the book’s source repository, there is a file called fx_server.retry.php. All it does is add one
 line at the top of the script, as shown here:
header("Content-Type: text/event-stream");

echo "retry: 10000\n\n";@flush();@ob_flush();

...
How do we test this? Well, the script contains a self-destruct
 clause! Just inside the top of the infinite loop, I’ve added
 this:
while(true){
 if(time() % 20) == 0)break;
 ...
At the start of each minute, and at 20 seconds past and 40 seconds
 past the start of each minute, the script will quietly exit. This is a
 nice clean exit, so the browser should learn about it
 immediately.
Ways to Kill
Another way to test SSE recovery of a connection is to kill the server.
 For instance, if I’m using Apache on Ubuntu I can just type sudo
 service apache2 restart. As with breaking out of the infinite loop shown previously, this is a
 clean kill: the browser should recognize the socket has died almost
 immediately.
Incidentally, sudo service apache2 graceful is
 exactly what you don’t want: it restarts all the Apache instances that
 are not doing anything, but your SSE process is doing something, so it
 keeps your SSE socket open.
What about ways to do a dirty kill?
If we run the server and client on different machines, we can
 simply pull out the network cable between them. Similarly, we could
 shut down the network interface on the server. The browser won’t
 detect the socket has failed and our keep-alive process will get to do
 its work.
Another approach, when using Apache, is to work out which of the
 Apache processes is servicing our request, get its pid, then
 do sudo kill -s STOP 12345, where 12345 is
 the pid. This works like pulling out the cable: the browser won’t
 detect the problem and instead our keep-alive will. The
 STOP signal means go to sleep. Use sudo kill -s
 CONT 12345 to start it up again (equivalent to plugging the
 cable back in).
Why doesn’t the browser detect the problem in the last two
 cases? Imagine if you pull out a cable for a second and then put it
 back in. Or you are connecting over mobile or WiFi and briefly go out
 of range, then come back in range again. By design, TCP/IP deals with
 these brief outages. The client cannot tell the difference between
 going quiet, a temporary problem, or a fatal problem. This is why we
 need a keep-alive system.

Point one of our client scripts at fx_server.retry.php to try it out. (fx_client.retry.html is supplied for this
 purpose; all that has changed is the URL to which it connects. Note that
 it has the keep-alive logic, so you can play with the interaction
 between the browser keep-alive and our own keep-alive.) With
 retry:10000, you will see 1–20 seconds of activity, then it
 will go quiet for 10 seconds. If you have the JavaScript console open,
 you will see an error appear: this is when the browser noticed that the
 socket disappeared. Then you will see it alternate between 10 seconds of
 activity (the seed of the new connection will be printed to screen) and
 10 seconds of quiet. Try commenting out the retry header in fx_server.retry.php. With Firefox (which uses a 5-second default for
 retry), you will see 15 seconds of activity alternate with
 a 5-second quiet period. Now try setting the retry header to 500 (i.e.,
 half a second), and you will see the errors appear in the console log,
 but almost no interruption of service.
Finally, try setting the retry to 21,000. This is higher than our
 own keep-alive check of 20 seconds. So our own code does the reconnect,
 not the browser SSE implementation. And now something fascinating
 happens: we end up connecting at 0, 20, and 40 seconds past each minute.
 This exactly matches the self-destruct times, and no data gets sent ever
 again! What fun. To be clear, this is just a chance interaction between
 the self-destruct time and the keep-alive timeout time. Try changing the
 self-destruct timing, or keepaliveSecs in your JavaScript,
 to get a feel for this. Or better still, keep retry to less
 than the keepaliveSecs and don’t put self-destructs in your
 code. Ah, but, hang on, self-destruction is also the theme of the next
 section.

Adding Scheduled Shutdowns/Reconnects

In the real-world FX markets, there is no data to send on weekends.[22] All those sockets are being kept open, but all that is sent
 down them are keep-alive messages. Especially nowadays, with the cloud
 allowing us to change our computing capacity hour to hour, this is a
 waste. So what we want is for the server to be able to broadcast a message
 saying: “That’s all folks. Tune in Monday morning for the next exciting
 episode.”
On the backend, we could add this code:[23]
$when = strtotime("next Sunday 17:00 EST");
$until = date("Y-m-d H:i:s T", $when);
$untilSecs = time() - $when;
sendData(array(
 "action" => "scheduled_shutdown",
 "until" => $until,
 "until_secs" => $untilSecs
));
This code sends the timestamp when the clients should reconnect, in the
 "until" field. We also send it as a Unix timestamp, the
 "until_secs" field, to make it easier for clients to
 work with. (It also means the client does not need to worry about
 differing time zones, or slow clocks: the server said come back in 100,000
 seconds, so that is what we will do.)
Here we choose 5 p.m. Sunday afternoon, in EST (New York winter
 time), the traditional weekly start for FX trading. Our calculation of
 $until is a bit crude. If it is already Sunday, then “next
 Sunday” will go horribly wrong. Second, New York switches from EST
 (UTC-05) to EDT (UTC-04) for the summer. Or, in plainer language, we want
 to use “EDT” from the second weekend in March through to the first weekend
 in November. PHP can do these calculations automatically for you, but that
 is starting to get outside the scope of this book. In a real application
 you will also want to consider public holidays, so you should consider
 getting all shutdown and reconnect times from a database rather than
 calculating them.
And in fact we will do something similar now (see fx_server.shutdown.php). The main loop now
 looks for the presence of a file on disk called
 shutdown.txt. It expects to find a datestamp in that
 file that strtotime can interpret.
Note
This is the first time we’re using strtotime in the
 book; see Date Handling in Appendix C if it is unfamiliar to you.

It will then send a shutdown to the clients, giving them that
 timestamp. This code has been added near the start of the main infinite
 loop:
$s = @file_get_contents("shutdown.txt");
if($s){
 $when = strtotime($s);
 $untilSecs = $when - time();
 if($when > 0 && $untilSecs > 0){
 $until = date("Y-m-d H:i:s T",$when);
 sendData(array(
 "action" => "scheduled_shutdown",
 "until" => $until,
 "until_secs" => $untilSecs
));
 break;
 }
 }
The first line uses @ to suppress error messages.
 Effectively, it does a check for existence of the file, then loads it. If
 the file does not exist, $s will be false. The rest of the
 code is basically the example we saw earlier, with a bit of error-checking
 for bad timestamps (because we get it from a file that could contain
 anything).
So, because it is summertime as I write this, at Friday 5 p.m. EDT I
 will create a file with these contents: “next Sunday 17:00 EDT.” I must
 make sure the file gets deleted by midnight on Saturday. (If I really
 didn’t want clients connecting in the daytime on Sunday, I could replace
 it with a file that just read “17:00 EDT” for the first 17 hours of
 Sunday.)
Let’s take a look at how we handle this on the frontend. There are
 two tasks: recognizing we got a shutdown message, and acting on it. For
 the first of those, we will add this to the end of our main loop:
...
else if(d.action=="scheduled_shutdown"){
 document.getElementById("msg").innerHTML +=
 "Scheduled shutdown from now. Come back at :" +
 d.until + "(in " + d.until_secs + " secs)
";
 temporarilyDisconnect(d.until_secs);
 }
A first stab at the temporarilyDisconnect() function
 looks like this:
function temporarilyDisconnect(secs){
var millisecs = secs * 1000;
if(keepaliveTimer){
 clearTimeout(keepaliveTimer);
 keepaliveTimer = null;
 }
if(es){
 es.close();
 es = null;
 }
setTimeout(connect, millisecs);
}
Stop the keep-alive timer (we don’t want that triggering while we’re
 supposed to be sleeping!), close the SSE connection (when we add our
 fallbacks we need to put an entry in here for each to shut them down,
 too), and then call connect() at exactly the time we
 are told to.
I said “first stab,” so you already know there is something wrong
 here…but it actually works perfectly. Test it (fx_client.shutdown.html). Start it running in
 your browser and then on the server, in the same directory as fx_server.shutdown.php, create a file called
 shutdown.txt and put a timestamp in that is about 30
 seconds in the future. Use a 24-hour clock, and I recommend giving the
 time zone explicitly. For example, if you are in London, in summer, and it
 is currently 3:30:00 p.m., then try “15:30:30 BST” (remember how
 strotime() works; if you do not give a date, it defaults to
 the current day). It converts that to GMT, so in your browser you’ll see a
 message something like “Scheduled shutdown from now. Come back at
 2014-02-28 14:30:30 UTC(in 29 secs).” Wait those 29 seconds and it comes
 back to life. Just. Like. Magic.
It works perfectly. What on earth could be wrong? Here’s a clue: it
 works perfectly and we call connect() at
 exactly the time we are told to. Have you spotted the
 hidden danger? Go back to the FX markets, and imagine you have 2,000
 clients. Think what is going to happen on Sunday, at 17:00:00, New York
 time. They will all try to connect at that exact same moment and you have
 the mother of all traffic spikes.
How can we avoid this? An observation: it does not really matter if
 some clients come back a little earlier. So how about we add the couple of
 lines highlighted here:
function temporarilyDisconnect(secs){
var millisecs = secs * 1000;
millisecs -= Math.random() * 60000;
if(millisecs < 0)return;
if(keepaliveTimer){
 clearTimeout(keepaliveTimer);
 keepaliveTimer = null;
 }
if(es){
 es.close();
 es = null;
 }
setTimeout(connect, millisecs);
}
Try this out (fx_client.jitter.html). It randomly spreads the
 client connection attempts out over a 60-second period before the connect
 time we told them. The second line I added just says if that means there
 is no sleep needed at all, then don’t even disconnect. By the way, you
 should delete shutdown.txt at least 60 seconds before
 the reconnect time. Otherwise, those early reconnecting clients just get
 told to go away again.

Sending Last-Event-ID

When we lose the connection and then reconnect, for whatever reason, we
 will get the new latest data when we reconnect. That is wonderful, but for
 any reasonably active data feed it means we will have a gap in our data.
 In Chapter 4 we went to the trouble of keeping a history
 of all the data we downloaded, but if it is not kept accurate and
 complete, it has much less value.
Fortunately, the designers of the SSE protocol gave this some
 thought. At connection time an HTTP header, Last-Event-ID,
 can be sent that specifies where the feed should start from. The ID is a
 string; it does not have to be a number.
The good news is that our fallbacks, using XMLHttpRequest and
 ActiveXObject, can use the setRequestHeader()
 function to simulate this behavior. The bad news is that we cannot specify
 it manually using EventSource. So with SSE we can only use
 the value that the server has previously sent to us, and
 that means that with a fresh connection we cannot specify it all. There is no
 setRequestHeader() function on the
 EventSource object
 (yet). This is one of those (rare) cases where our fallbacks are better
 than SSE.
Note
If you are thinking this restriction on not being able to send our
 own Last-Event-ID header must have to do with security,
 perhaps so the server can stop us from trying to access older data, I
 should point out you could get around it with any HTTP client library in
 any major computing language. Such security would be an illusion.

Imagine the case where we are reconnecting because our own
 keep-alive triggered. Or where the user has reloaded the page, and we are
 storing her history in an HTML5 LocalStorage object (therefore, we
 know the last data event she received, including its ID). For these cases,
 we will have to send the ID in the URL. So, the server has to look at both
 the URL and the Last-Event-ID header. The header should
 always get precedence (because that would mean it is one of the
 EventSource auto-reconnects, meaning the ID embedded in
 the URL is now out of date).
The next thing to consider is that there is only a single ID for a
 given SSE connection. If we are sending different data feeds (e.g.,
 different FX exchange rates) down the same connection, what should we do?
 There is the easy way, and the hard way. The hard way is shown in the next
 section. The easy way, and the one we will use here, is to use the current
 time. Specifically, we will use the time on the server, and it will be in
 milliseconds since 1970. We use milliseconds since
 1970 because that is the internal JavaScript format, so no conversion will
 be needed. How does it look on the server side? Just before each data line
 we send, we will send the time in the id field. So the
 client might receive a sequence of data like this:
id:1387946750885
data:{"symbol":"USD/JPY","timestamp":"2013-12-25 13:45:51",↵
 "rows":[{"id":1387946750112,"timestamp":"2013-12-25 13:45:50.112",↵
 "value":98.995},{"id":1387946750885,"timestamp":"2013-12-25 13:45:50.885",↵
 "value":98.980}]}

id:1387946751610
data:{"symbol":"USD/JPY","timestamp":"2013-12-25 13:45:51",↵
 "rows":[{"id":1387946751610,"timestamp":"2013-12-25 13:45:51.610",↵
 "value":98.985}]}
Note
The id: line can just as well come directly
 after the data: line, as long as both are before the
 blank line that marks the end of the SSE message.

Keen-eyed readers will notice that the data: lines have
 a different format than what we have been sending up to now. In each row
 we now send an id field, in addition to the timestamp. This
 is needed because in SSE (but ironically not in our fallbacks) we cannot
 get hold of the id row. Notice that the id
 is encoded in JSON as an integer, not a string.
I will start with the changes in the FXPair
 class. Relative to fxpair.structured.php, you will find just a
 couple of lines have changed in the generate() function
 of fxpair.id.php. The new version of
 generate() looks like this, with the additions
 highlighted:
public function generate($t){
$bid = $this->bid;
$bid += $this->spread * 100 *
 sin((360 / $this->long_cycle) *
 (deg2rad($t % $this->long_cycle)));
$bid += $this->spread * 30 *
 sin((360 / $this->short_cycle) *
 (deg2rad($t % $this->short_cycle)));
$bid += (mt_rand(-1000,1000)/1000.0) * 10 * $this->spread;
$ask = $bid + $this->spread;

$ms = (int)($t * 1000);
$ts = gmdate("Y-m-d H:i:s",$t).sprintf(".%03d",$ms % 1000);
return array(
 "symbol" => $this->symbol,
 "timestamp" => $ts,
 "rows" => array(
 array(
 "id" => $ms,
 "timestamp" => $ts,
 "bid" => number_format($bid, $this->decimal_places),
 "ask" => number_format($ask, $this->decimal_places),
)
)
);
}
$t is the number of seconds since 1970, with a
 fractional part. To get milliseconds since 1970, $ms,
 multiply by 1,000 (and because $t is to microsecond accuracy,
 then use (int) to truncate the microsecond part away).
 Sending this number back to the client is as easy as adding the
 'id'=>$ms, line.
To have fx_server.id.php send
 the id back to SSE clients, just a couple of additions
 are needed relative to fx_server.shutdown.php. At the top, add
 include_once("fxpair.id.php");, the new
 FXPair class. Then just below the definition of
 sendData(), add another helper function:
function sendIdAndData($data){
$id = $data["rows"][0]["id"];
echo "id:".json_encode($id)."\n";
sendData($data);
}
So it outputs the id: row, then relies on
 sendData() to output the data: row and do the
 flush.
Note
In the sendIdAndData() function just shown, we have
 this line: echo "id:".json_encode($id)."\n";. This could
 equally well have been echo "id:$id\n"; because
 $id is an integer and therefore needs no special JSON
 encoding. Try changing it to see that the application behavior is
 identical. I’ve chosen to use json_encode() explicitly so
 that this code is ready to go if $id is a string or even
 something more complicated (see the following section).

Then in the middle of the main loop, change:
sendData($symbols[$ix]->generate($t));
into:
sendIdAndData($symbols[$ix]->generate($t));
To use it from the browser, just change the URL to connect to; there
 is nothing else to be done on the frontend, because SSE’s use of
 id: is taken care of by the browser, behind the
 scenes.
Note
Now that there is an integer ID in the row data, we could go
 back and change our history store to use that as the key, instead of
 the timestamp string. It should mean the key is 8 bytes instead of 24
 bytes for the string. It might mean lookups are quicker. There is a
 catch, though: we also use that timestamp string in our interface. So
 either we still need to store it (more memory usage overall), or we
 need to make the timestamp from the milliseconds value, using
 JavaScript’s Date functions (more CPU usage, though
 it does give us the flexibility to use different date formatting). I
 chose not to change anything.

Something to be careful of is that the ID should be the timestamp of
 the (most recent) data, not the current time. This is
 shown in the preceding code (I don’t expect you to know the ID number, but
 the last three digits match the fraction of the second, and the fourth
 digit from the end is the last digit of the seconds). Of course, the
 timestamp on your new data and the current time are going to be close, but
 consider the case when the data being fed to the clients is coming to your
 server from another server, and to that server from another. The latency
 from all those hops could start to add up. We need to know the ID of the
 data, because when reconnecting, we use that ID to
 tell the server the last piece of data we saw, so
 that it can restart the feed from the very next item.

ID for Multiple Feeds

What if we have data feeds that are not being indexed by time? For instance,
 what if we are sending messages that we get by polling an SQL database,
 which uses an autoincrement primary key. Being given the
 timestamp in the Last-Event-ID header would require a search
 of the timestamp column, which is either slow or requires us to add
 another index column to our database (and that slows down database
 writes). What we really wanted in Last-Event-ID is the last
 value of the primary key that has been seen.
But then what if we are polling multiple tables? For instance,
 consider a chat application or a social network where we push out all
 kinds of notifications: chat messages, requests to chat, friends available
 for chat, friends who have logged off, new friend requests, etc. We need
 Last-Event-ID to tell us the latest ID seen in each of those
 tables.
Sounds hard, doesn’t it? But I have some good news. The ID the
 server sends in the id: field, and that is sent back in
 Last-Event-ID, can be a string of any characters (to be
 precise, anything in Unicode except LF or CR). We settled on using JSON
 for the message we put in the data: lines, so why not do the
 same for the data we put in the id: line? It might look like
 this:
id:{"chatmessages":18304,"chatrequests":1048,"friendevents":8202}
The need to use this technique is not as contrived as it may sound.
 It is quite common in the finance industry to sell delayed data at a
 different price. For instance, a live feed of stock market share prices
 can be expensive, but Yahoo! and Google can show us 20-minute delayed
 prices for free. If you buy live data for just two symbols, and get the
 delayed prices for all the other symbols, your lastId
 variable is going to be continuously jumping back and forth 20 minutes.
 You are guaranteed that whatever its value when you need to do a
 reconnect, it is going to be wrong for some symbols. One solution is to
 send id like this:
id:{"live":1234123412,"delayed":1234123018}
One last thing to be careful of with using a JSON object for the
 id: field: if it gets past a hundred bytes or so, you cannot
 use GET, and will need to use cookies (See HTTP POST with SSE in Chapter 9 to
 learn why HTTP POST is not a choice.) Then if it gets past a few thousand
 bytes, it is going to cause problems when sent as an HTTP header (remember
 SSE sends this header for you; you cannot control it). Specifically most
 web servers complain (send a 413 status code) if the total
 header size (request line, all headers, including the user agent and all
 cookies) exceeds 8KB.
Note
Older versions of nginx have a 4KB limit, but the current default
 is 8KB, and it can be configured: http://wiki.nginx.org/HttpCoreModule#large_client_header_buffers.
 Apache can be similarly configured: http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestfieldsize.

So, if your id: field is over a hundred bytes,
 stop and think if there is a better way. For instance, can the current
 position in each data source be stored server side, in a user session, and
 have that session referenced with a cookie?

Using Last-Event-ID

Back in the server-side script, how do we use the Last-Event-ID header? When
 using PHP, with Apache, headers sent by the browser get:
	Changed to uppercase

	Prefixed with HTTP_

	Put in $_SERVER

In fx_server.id.php,
 here is what we do:
if(array_key_exists("HTTP_LAST_EVENT_ID", $_SERVER)){
 $lastId = $_SERVER["HTTP_LAST_EVENT_ID"];
 }
elseif(array_key_exists("lastId", $_POST)){
 $lastId = $_POST["lastId"];
 }
elseif(array_key_exists("lastId", $_GET)){
 $lastId = $_GET["lastId"];
 }
else $lastId = null;
(The lines mentioning $_POST and $_GET are
 explained in the next section.) Then I put the following code between
 setting $t based on finding seed in the
 HTTP request and using $t to set the random seed:
if($lastId)$t = $lastId / 1000.0;
In other words, because this is only a test application, I’m
 basically using the Last-Event-ID header as a synonym for
 seed. For the sake of testing and understanding how
 Last-Event-ID works, this is good enough; in a real
 application, this is where you would do the history request, then send a
 patch of the missing data.
Warning
Security Alert! lastId is pure, unadulterated user
 input. It can theoretically contain anything; never assume it will
 only ever contain what your frontend JavaScript puts in it. A hacker
 could put whatever he wants in it.
The preceding code is actually secure, but in this case the
 security check is very subtle: I expect $lastId to be a
 number. When I divide by 1000.0, if it is anything but a
 number, PHP will first implicitly convert it to a number. If a hacker
 has set lastId to be {"hello":"tell me your
 password"}, that ends up as 0 before being divided
 by 1000.0. $t gets set to January 1, 1970.
 The worst thing that a hacker can do is put $t as a date
 in the far past or far future.
When lastId contains other types of data, you have
 more work to do to sanitize it and understand the potential risks.
 This isn’t a book on web security, so I suggest you read up on the
 sanitization techniques available for the backend language you are
 using.

How to test? The same way we tested the retry: header
 earlier (see Ways to Kill). So, try cutting the
 connection (have your JavaScript console open so you can see when the
 disappearance of the SSE socket is noticed by the browser) and after a few
 seconds the browser reconnects and continues with the quotes from the
 timestamp it had reached.
Note
You will notice the quotes start falling behind the wall clock!
 This is just a side effect of it being artificial test data. If it
 really bothers you, find a good therapist.

Getting Last-Event-ID in Node.js
The code shown in this section was using some features quite
 specific to PHP, so how does it
 look in Node.js? The following example has been grafted onto
 basic_sse_node_servers.js, which we
 saw back in Chapter 2:
var url = require("url");
...
http.createServer(function(request, response){
 var urlParts = url.parse(request.url, true);
 if(urlParts.pathname != "/sse"){
 ...
 }

 var lastId = null;
 if(request.headers["last-event-id"]){
 lastId = request.headers["last-event-id"];
 }
 else if(urlParts.query["lastId"])lastId = urlParts.query["lastId"];
 console.log("Last-Event-ID:" + lastId);

 //The SSE data is streamed here

 }).listen(port);
(You can find this code as basic_sse_node_server.headers.js in the
 book’s source code.)
HTTP headers are found in request.headers. Nice and
 easy. Just remember they have been lowercased.
To get the GET data requires parsing request.url,
 which is done at the top of the function. After that, the GET data can
 be found in urlParts.query.
You notice I do not show how to get POST data. It is a bit more
 involved, though only to the tune of six lines or so.[24] But the real complication is that the parsing is
 asynchronous. So the code would need to be refactored to use callbacks,
 which is getting a bit involved for this sidebar!

Passing the ID at Reconnection Time

During the previous section I showed how to get $lastId
 from the Last-Event-ID header. But I also included code to
 look in the POST and GET data for a variable named lastId.
 This allows us to specify the ID ourselves on a fresh connection, not rely
 on the underlying SSE protocol. Why do we need this? Because
 EventSource currently has no way to allow us to send
 our own HTTP headers. No, but why do we need this? It
 is needed in two cases:
	When our keep-alive has triggered and it is our JavaScript
 doing the reconnect, not the browser’s implementation of SSE

	When reloading the page in the browser, and a cookie or
 LocalStorage object knows the last ID we’ve
 seen

Take note of the order of the code: it is first come,
 first served. If the header is present, then that is used. Otherwise, we
 look in the POST data (this is actually for the fallbacks in the next two
 chapters; native SSE does not support POST-ing data). If neither the
 Last-Event-ID header nor lastId is in the POST
 data, then and only then will it look for lastId in the
 URL. This is important because when SSE sends the
 Last-Event-ID header to reconnect it will be using the
 same URL. If we let the GET data have precedence over the
 Last-Event-ID header, it will be using an old ID and
 not the latest one.
Over on the client side, what changes do we need to make? Start with
 a global:
var lastId = null;
If you are saving permanent state in a LocalStorage
 object, you would initialize lastId from that.
We only want lastId pasted into the URL for SSE,
 not for the other fallbacks (because we can set HTTP headers for them). So
 instead of connect(), we change
 startEventSource(), which currently looks like this:
function startEventSource(){
if(es)es.close();
es = new EventSource(url);
es.addEventListener("message",
 function(e){processOneLine(e.data);}, false);
es.addEventListener("error", handleError, false);
}
to the following (changes in bold):
function startEventSource(){
if(es)es.close();
var u = url;
if(lastId)u += "lastId="
 + encodeURIComponent(lastId) + "&";
es = new EventSource(u);
es.addEventListener("message",
 function(e){processOneLine(e.data);}, false);
es.addEventListener("error", handleError, false);
}
The last step is where the refactoring in Chapter 4 (adding an id field to each row of
 data) can finally bear fruit. In function processOneLine(s),
 there is currently this loop:
for(var ix in d.rows){
 var r = d.rows[ix];
 x.innerHTML = d.rows[ix].bid;
 full_history[d.symbol][r.timestamp] = [r.bid, r.ask];
 }
Now add one line to the end of the loop, so that the
 lastId global always contains the highest ID received so
 far:
for(var ix in d.rows){
 var r = d.rows[ix];
 x.innerHTML = d.rows[ix].bid;
 full_history[d.symbol][r.timestamp] = [r.bid, r.ask];
 lastId = r.id;
 }
Again, if using Web Storage to persist data even after the browser
 is shut, you would update that here (e.g., localStorage.lastId =
 r.id;) too.
IDs and Multiple Upstream Data Sources
Remember that the approach described in the main text (a single
 global for lastId) only works when all symbols (aka
 multiplexed data feeds) share the same ID system. In our case, all the
 symbols use id to mean the time of the quote (in
 milliseconds since 1970).
But even when using a timestamp as the unique ID, there is need
 for care. If the system is broadcasting share prices from two or more
 exchanges, then those two exchanges could be slightly out of sync, or
 one might have experienced a temporary delay. As an example, you have
 received prices up to 14:30:27.450 for the New York Stock Exchange, but
 the last NASDAQ price seen was 14:30:22.120 and 5 seconds’ worth of
 prices are currently delayed, and then you lost your own connection.
 When you reconnect, if you say the last price seen was at 14:30:27.450,
 you would miss out on those 5 seconds of NASDAQ prices. If instead you
 request prices since 14:30:22.120, you get 5 seconds of duplicate NYSE
 information.
So when dealing with two upstream data sources, maintain the last
 ID for each (see ID for Multiple Feeds).

To test this we need to force a keep-alive timer to timeout, meaning
 that our script has to go quiet, but not die (if the socket dies cleanly,
 the SSE reconnect will kick in first). One way to do that is to put the
 following code at the top of our infinite main loop over in fx_server.id.php :
if($t % 10 == 0){sleep(45);break;}
In other words, go to sleep for a long time and then exit, every 10
 seconds. (The client will have disconnected before sleep()
 returns, causing the PHP process to be shut down so the break
 is not really needed.) If you use that method, it will hit a problem when
 it reconnects, because $t will be divisible by 10, so it will
 immediately fail. Ad infinitum. A workaround for that is to place this
 line just before entering the infinite main loop. It just fast-forwards
 the clock to get past the divisible-by-10 point:
while($t % 10 == 0 || $t % 10 == 9)$t += 0.25;
Note
If you want a ready-made version, see fx_server.die_slowly.php in the book’s source
 code, which is paired with fx_client.die_slowly.html (the only change
 from fx_client.id.html is the URL
 it connects to).

When you test this, you should see a few seconds of quotes come
 through. Then it stops. After 20 seconds (the keep-alive timer length), it
 connects again and you should see quotes pick up from where it left off.
 (See Ways to Kill for ways to dirty-kill a
 socket so you can test how this code copes with that.)

Don’t Act Globally, Think Locally

Up until now all our code has used a bunch of global variables. Appendix B
 explains why this is bad, and what we can do about it, but the bottom line
 is that using those globals is stopping code reuse: we cannot have more
 than one SSE connection on a page. The following listing is based on
 fx_client.id.html, but adds the highlighted
 sections:
var url = "fx_server.id.php?";

function SSE(url,options){
if(!options)options={};
var defaultOptions={
 keepaliveSecs: 20
 };
for(var key in defaultOptions)
 if(!options.hasOwnProperty(key))
 options[key]=defaultOptions[key];

var es = null;
var fullHistory = {};
var keepaliveTimer = null;
var lastId = null;

function gotActivity(){
if(keepaliveTimer != null)
 clearTimeout(keepaliveTimer);
keepaliveTimer = setTimeout(
 connect, options.keepaliveSecs * 1000);
}
.
. (all other functions untouched)
.
connect();
}

setTimeout(function(){new SSE(url);}, 100);
There are two main changes:
	Encapsulate all the variables and functions, so that
 SSE is the only thing in the global scope, and multiple
 instances could be created.

	Introduce an options parameter, where everything
 is optional. keepaliveSecs was moved in
 here.

I said multiple instances could be created, but
 it would be silly to just create two instances here without thinking about
 your data and how it is to be displayed. Currently, the code is hardwired
 to use the static HTML found in fx_client.closure.html. So two instances would
 end up competing for control of the HTML. What to do? If you want a single
 HTML table to show merged data from two data feeds (e.g., USD/JPY comes
 from one feed, EUR/USD comes from another feed) then
 fullHistory should be pulled out of the SSE
 constructor and returned to being a global, along with
 updateHistoryTable() and makeHistoryTbody(). On
 the other hand, if you want two sets of data to appear in the browser, you
 should wrap each block of HTML in a div, and give the ID of that div as a
 parameter to the SSE object. (See Tea for Two, and Two for Tea for an example of the latter
 approach.)

Cache Prevention

The browser would be silly to cache streaming data. However, it never
 hurts to get a bit explicit. So, near the top of your script (near where
 you set the Content-Type header), add these
 lines:
header("Cache-Control: no-cache, must-revalidate");
header("Expires: Sun, 31 Dec 2000 05:00:00 GMT");
The first
 one is for HTTP/1.1, and should really be the only thing you need, given
 that HTTP/1.1 was defined in 1999. But there are still some old proxies
 around, so that is what the second line is for; it just has to be any date
 in the past. You could also add header('Pragma: no-cache');
 as a third line, but it should be completely redundant in both old and new
 browsers, servers, and proxies.

Death Prevention

This code is PHP-specific, and is more important on Windows than Linux; if your script keeps
 dying after 30 seconds, this might well be the fix. I’ve left the
 explanation of why to Falling Asleep. Just
 throw this line at the top of your script (right after the
 date_default_timezone_set('UTC'); line is just
 perfect):
set_time_limit(0);

The Easy Way to Lose Weight

Shed those pounds the easy way! Just take this tasty pill and watch
 your dreams come true:
AddOutputFilterByType DEFLATE text/html text/plain text/xml text/event-stream
If
 inserted in the correct place (i.e., your Apache server configuration), this will run gzip compression
 on the data sent back. But first look for a line similar to that in your
 existing configuration; perhaps you just need to add
 text/event-stream to the list. For instance, in
 Ubuntu there is a file called deflate.conf (under /etc/apache2/mods-enabled/) and I added
 text/event-stream to the end of the line that mentions
 text/plain.
Another way to configure Apache is to DEFLATE
 everything except a few image formats. That might look like this (and
 if this is what you already use, there is nothing to add for SSE):
<Location />
 SetOutputFilter DEFLATE
 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip dont-vary
 Header append Vary User-Agent env=!dont-vary
</Location>
Learn more about Apache configuration of
 compression at http://httpd.apache.org/docs/2.4/mod/mod_deflate.html.
 The Vary header is added to avoid some issues with
 proxies.
If using IIS as your web server, this article explains how to
 configure compression for dynamic content: http://technet.microsoft.com/en-us/library/cc753681.aspx.
If using nginx, see http://nginx.org/en/docs/http/ngx_http_gzip_module.html.
 Note that you might want gzip_min_length to be set to 0, or some low number, to make sure it works for
 streaming content, too.

Looking Back

In this chapter we have tried to improve the
 quality of our application, by reporting errors,
 sending keep-alives, avoiding caching problems, and reconnecting when
 there is a problem. For reconnecting we use both SSE’s built-in
 retry mechanism, and our own, both relying on the application
 sending us an ID number that tells us the latest data seen so far. We also
 looked at scheduled shutdowns and supporting multiple connections.
The next couple of chapters work on the
 coverage of this application, instead of the quality,
 allowing browsers without SSE support to receive the same data while
 keeping all the production-quality features introduced here.

[19] At the time of writing, all browsers quietly swallow SSE
 comments, so you cannot even see them in the developer tools.

[20] At the time of writing, it is 3 seconds in Chrome and Safari (see
 core/page/EventSource.cpp in the WebKit or
 Blink source code) and 5 seconds in Firefox (see
 content/base/src/EventSource.cpp in the Mozilla
 source code).

[21] Firefox enforces a minimum reconnect time of 0.5 seconds.

[22] We could have done this for the simulation server that was
 created in the earlier chapters: regularly look at the time and go to
 sleep for 48*3600 seconds at Friday, 5 p.m., New York time. But I left
 it as working 24/7 because chances are that you will want to try using
 the demo scripts on weekends. There is such a thing as too much
 realism!

[23] Note: this assumes the script is running in the UTC (GMT) time
 zone. If your server is not set for UTC, then at
 the top of your PHP script use
 date_default_timezone_set('UTC');. Or if you write the
 timestamp you give to strtotime in the local server timestamp,
 it will work (but creates more work on the client).

[24] You can find a good discussion of this at http://stackoverflow.com/q/4295782/841830.

Chapter 6. Fallbacks: Data Push for Everyone Else

What we are going to look at in this chapter is a fallback approach, called long-polling,
 that (with a few tweaks) works just about everywhere. If the data being
 pushed is relatively infrequent, its inefficiency won’t even be noticed and
 you could get away with using it everywhere, but generally we will just use
 it for browsers where there is no native SSE support.
In both this and the next chapter I will start by showing the code in
 a minimal example. Then, after that, the FX demo from the end of Chapter 5 will be adapted to work with long poll. By the end of
 this chapter we will have 99% coverage (albeit with varying levels of
 inefficiency) for our production-quality, realistic, data push
 application.
Browser Wars

The differences between browsers (aka “The Browser Wars”) have been annoying
 us since the mid-1990s, but they became especially troublesome when
 Microsoft threw its hat into the ring and we went through a phase where
 each browser manufacturer tried to make the Web better, unilaterally,
 attempting to differentiate its product with
 features. That wasn’t what either the end users (you
 and me) or the content developers (again, you and me) wanted. Standards
 got discussed and ignored; it is only in the past few years that all the
 browser manufacturers have started taking standards seriously. The browser
 manufacturers finally realized they should differentiate themselves on
 user interface and speed, not proprietary features.
But we still have their mess to deal with. And when it comes to
 using the latest HTML5 technologies, the mess is still being created and
 it is going to be around for the next 3–4 years, at least. When it comes to SSE I
 am going to shine the spotlight of shame first on Google, then Microsoft.
 The built-in Android browser only started supporting SSE as of Android 4.4
 (though many earlier Android devices use Chrome, which does support SSE); the XHR fallback (described
 in the next chapter) works since Android 3, but fails on Android 2.x
 (which still has a large number of users at the time of writing; see
 http://bit.ly/wiki-android-versions).
Over in the blue corner, Microsoft has made Internet Explorer (IE) more standards-compliant with each
 release, so much so that IE9 and later get grudging approval from most web
 developers. But, as of IE11, SSE is not supported, and next chapter’s XHR
 fallback does not work on IE9 and earlier. There is another fallback,
 iframe, also covered in Chapter 7, that only works on
 IE8 and above.
The long-poll approach shown in this chapter is not quite as
 efficient as native SSE (or the fallbacks we will study in Chapter 7), but for Android 2.x and IE6/7, it is the only
 choice. Actually, the inefficiency won’t be noticed in most applications.
 But if you are sending multiple updates per second, it is possible that
 the extra resource usage (client-side CPU, server-side CPU, and network
 bandwidth) will become noticeable.
Note
That is not to say you cannot use long-poll at subsecond
 frequencies. I’ve tested it at 10 updates/second, with no degradation.
 At 100 updates/second, and passing an ID to specify the last received
 data (see Sending Last-Event-ID), it keeps up—you
 get all the data, but it comes through in lumps: you won’t get 100
 distinct messages each second.

What Is Polling?

Before I tell you what long-polling is, we should
 first talk about regular polling, which is shown graphically in Figure 6-1. Regular polling is where you knock on the door of
 your best friend and ask “Are you ready to play?” and she immediately says
 “yes” or “no.” If she says “yes,” you go out and have fun. If she says
 “no,” she shuts the door in your face, and 30 seconds later you knock on
 the door and ask her (poll her) again. Eventually she’ll be ready. Or she
 was only pretending to be your best friend. Or you had garlic for
 breakfast.
[image: Polling your friend]

Figure 6-1. Polling your friend

The really odd thing that I want you to understand about regular
 polling is that once your friend is finally ready, she will just sit
 there, staring at the wall like a zombie, waiting for you to come and
 knock on the door again.
In the context of our FX demo, regular polling means that at a fixed
 rate, say every 10 seconds, we do an Ajax HTTP request to ask for data.
 When we do regular polling we have to decide if we want to do
 sampling or if we want to receive
 everything. If we are sampling, the server will send
 the latest price for all symbols. Just one price for each symbol. The
 client will get price snapshots, but not the prices between each of the
 polling requests. The alternative to sampling is that each time we poll
 the server we also send the timestamp of the last update we received, and
 request all updates since that time. The backend server might reply with a
 blank array to say no updates, or it might reply with a huge array if
 there have been lots of updates. Compared to sampling, you are able to
 maintain a full history on the client side.

How Does Long-Polling Work?

So, how is long-polling different from regular polling? Going back to our best
 friend, we go and knock on her door, and say, “Are you ready to play?” and
 she replies, “No, but let’s leave the door open and as soon as I’m ready I
 will come and tell you.” See Figure 6-2 and notice how you
 only knock on the door once, how the door stays open, and how
 each and every visit gets data.
[image: Long-polling your friend]

Figure 6-2. Long-polling your friend

In the context of our FX demo, we do the Ajax HTTP request, but we
 don’t ask for the latest price. Instead we ask to be told about the next
 price change. If things have gone quiet, it just sits there, holding a
 socket open. Then as soon as the price changes, it sends it, and shuts the
 socket. We then immediately make another long-poll
 connection, for the next price change.
The key difference between SSE and long-poll is we need a new HTTP
 connection for each piece of data. We still have the downside that
 SSE/WebSocket had, because we are using up a dedicated socket practically
 all the time. Latency-wise, it is almost as good as SSE: when a new price
 arrives we get to hear about it immediately. It’s almost but not quite as
 good, because making the new HTTP connection each time takes a few
 milliseconds. And once you turn up the rate of messages to 10 or more per
 second, that “just a few milliseconds” for each new connection starts to
 take up the majority of the time. (On slow latency networks such as
 mobile, that few milliseconds might actually be hundreds or even thousands
 of milliseconds, so it’s slow right from the start.)
Is Long-Polling Always Better Than Regular Polling?
Which is best depends on your definition of
 better. From the point of view of latency,
 long-polling is always better: as soon as the server has a new value,
 you get it. In regular polling you have to wait until the next time you
 poll to discover it. (This latency advantage also applies to SSE and the
 other fallbacks we discuss in the next chapter.)
But what about from the point of view of overall bandwidth usage?
 The answer to that is not so clear cut. If your FX prices update twice a
 second, long-polling has to make 120 HTTP requests each minute. If you
 were instead doing regular polling once every 10 seconds, you only had
 to make six HTTP requests each minute. So regular polling is better.
 But, conversely, if your FX prices update twice a minute, with
 long-polling you only had to make two HTTP requests each minute, whereas
 regular polling every 10 seconds still had to make six HTTP requests.
 And latency is still worse!
Knowledge of your data, and exactly when it will update, can also
 be used with long-poll or native SSE: disconnect when not expecting any
 data. This gives you the same latency (assuming you reconnect in time),
 but saves on socket usage (and associated costs like an Apache process).
 This was the technique we showed in Adding Scheduled Shutdowns/Reconnects. (If you end up using it, pay
 close attention to why the reconnects were randomly jittered.)

Show Me Some Code!

That was a lot of words, so how about some code, for balance? First, the
 backend:
<?php
usleep(2500000); //2.5s
header("Content-Type: text/plain");
echo date("Y-m-d H:i:s")."\n";
Short and simple. Save this as minimal_longpoll.php and put it on your web
 server. When you call it, there is a 2.5 second wait and then it shows you
 the current timestamp. About the only thing I need to point out about
 the code is that we send the header after the sleep,
 not before. The sleep is simulating waiting for our next piece of data,
 and until we get that data we will not know what kind of data we are
 sending. For instance, we might end up needing to send back an error code
 instead, based on some external event, in which case the code would be
 something like this:
<?php
usleep(2500000); //2.5s
$cat = (rand(1,2) == 1) ? "dead" : "alive";
if($cat == "dead"){
 header("HTTP/1.0 404 Not Found");
 echo "Something bad happened. Sorry.";
 }else{
 header("Content-Type: text/plain");
 echo date("Y-m-d H:i:s")."\n";
 }
Now for the frontend. Put minimal_longpoll_test.html in the same
 directory as minimal_longpoll.php,
 and try loading it in a browser. You will see “Preparing!” flash on screen
 for a moment, then the JavaScript runs and it gets replaced by “Started!”
 Then a moment later it gets replaced with .[1]. This tells
 you a connection has been made (readyState==1). Two and a
 half seconds later it will typically show .[1].[2].[3].[4]
 followed by the timestamp, then on the next line another .[1]
 (meaning another long-poll connection has been made). What you see might
 vary from browser to browser, depending on exactly how Ajax has been
 implemented; it is only the [1] (Ajax request started) and
 the [4] (Ajax request completed) that are important. See
 Ajax readyState to learn what the 1, 2, 3, and
 4 mean.
<!DOCTYPE html>
<html>
 <head>
 <noscript>
 <meta http-equiv="refresh"
 content="0;URL=longpoll.nojs.php">
 </noscript>
 <meta charset="utf-8" />
 <title>Minimal long-poll test</title>
 </head>
 <body>
 <p id="x">Preparing!</p>
 <script>
 function onreadystatechange(){
 s += ".[" + this.readyState + "]";
 document.getElementById('x').innerHTML = s;
 if(this.readyState != 4)return;
 s += this.responseText + "
\n";
 document.getElementById('x').innerHTML = s;
 setTimeout(start, 50);
 }

 function start(){
 var xhr;
 if(window.XMLHttpRequest){
 xhr = new XMLHttpRequest();
 }
 else{
 xhr = new ActiveXObject("Msxml2.XMLHTTP");
 }
 xhr.onreadystatechange = onreadystatechange;
 xhr.open('GET', 'minimal_longpoll.php?t=' +
 (new Date().getTime()));
 xhr.send(null);
 }

 var s = "";
 setTimeout(start,100);
 document.getElementById('x').innerHTML = "Started!";
 </script>

 </body>
</html>
Start your study of the source code by looking at the
 start() function. This initiates a long-poll request. First
 we create our XMLHttpRequest object, unless we are on
 Internet Explorer, in which case we create an
 Msxml2.XMLHTTP ActiveX object. The two objects have the same
 functions and behavior, so all other code is the same. The next line,
 xhr.onreadystatechange = onreadystatechange;, tells it the
 name of the callback function we want all data to be sent to. As an aside,
 we could have used JQuery to hide this Ajax complexity. But there isn’t
 that much complexity in the end, just two or three extra lines.
Then we do xhr.open to say which page to get data from,
 and xhr.send() to actually start everything going. (The
 explicit null parameter to send() is needed on some
 browsers.)
At the beginning of this chapter, I mentioned that a few tweaks were
 needed to get long-poll working in all browsers. The first of those is
 that some browsers (e.g., Android) will cache the Ajax request. To avoid
 this, we append something to the URL. A simple approach is to use the
 current timestamp, expressed as milliseconds since 1970.
With IE6/7 there is another thing we need to be careful of: we must
 use a fresh XHR object for each request. If, instead, we create the XHR
 object once, then just call send() again each time we want to
 start a long-poll request, it works in all browsers
 except Internet Explorer 7 and earlier. But by
 creating a fresh object each time, it works everywhere. We do it that way
 for all browsers; it is not really any extra trouble.
Another tweak is the very first call to start().
 Instead of calling it directly, we use setTimeout to add a
 100ms delay. This is needed by some versions of Safari, at least. Without it, you see a permanent loading
 spinner. There has to be enough time for the rest of the page to be parsed
 and made ready. (It is not needed by Android, in my testing, so if Android
 is the only one of your supported browsers using long-poll, you could try
 removing the 100ms delay.)
The next function I would like you to look at is
 onreadystatechange (“on-ready-state-change”). This is a
 callback function that is called as it progresses through the request; see
 the following sidebar. All we are interested in here is when
 readyState becomes 4, because that means we’ve received some
 new data. It also means the remote server has closed the
 connection.
Ajax readyState
An XMLHttpRequest object (and also Internet Explorer’s Msxml2.XMLHTTP
 ActiveX object) can be in a number of different states. You don’t
 normally need to care, and if you have only ever made your Ajax
 connections using jQuery, you won’t even have met them. The states are a
 number from 0 to 4, with the following meanings:
	0
	Request has not started yet.

	1
	A connection to the server has been made.

	2
	The request (and any post data) has been sent to the
 server.

	3
	Getting data.

	4
	Got all data and connection has closed.

For long-poll (and short-poll, and normal Ajax usage), we ignore
 everything we get until readyState becomes 4. Our
 onreadystatechange callback is called exactly once for when
 readyState is 4. In the next chapter we will look at a
 technique where we do care about readyState 3. It might be
 called more than once. Different browsers treat it differently, and some
 make the data loaded so far available, while others do not. Different
 browsers treat readyState 0, 1, and 2 differently, so you
 cannot always rely on them being given to you.

So, we output a period each time the function is called, but if
 readyState is not yet 4, then that is all we do. Once
 readyState has become 4, we output the message the
 server has sent us (found in responseText), and then we
 initiate the next long-poll request by calling
 start().
There is a 50ms delay on calling start(), again done
 with setTimeout() because otherwise some browsers get
 confused and eventually complain about stack overflows and such. Long-poll
 is our fallback for the dumbest browsers, so don’t sweat having to
 introduce a bit of extra latency. (Again, Android does not appear to need
 the 50ms delay in my testing.)

Optimizing Long-Poll

I mentioned earlier that long-poll is fine most of the time, but starts
 to become quite inefficient when things heat up. If we are sending a new
 update twice every second, that is up to 120 new HTTP requests a minute
 that have to be made. When this happens, there are two things we can do to
 reduce the load a bit.
The first is easy: have the client go slower. In fact, our code
 already does this—we have a 50ms sleep before initiating the next
 long-poll request. If you increased that from 50 to 1000, then the
 absolute maximum number of long-poll requests we can make is 60 per
 minute. Allowing for some network overhead, you are looking at a maximum
 of 40 to 50 requests per minute. When data is less frequent, the extra
 delay causes no real problem: you get your next update after 16 seconds
 instead of 15 seconds. You can think of the length of that sleep as the
 continuum between the extremes of long-poll (zero latency, possibly lots
 of requests) and regular-poll (predictable latency, predictable request
 rate).
The other approach is server side. We could buffer up data for the
 long-poll clients, sending their data no more than once/second. How would
 this work? First, make a note of the time they connect (for example,
 18:30:00.000). Then, say, we have data available to send to clients at
 18:30:00.150, but we decide not to flush the data yet, because it has been
 less than a second since they connected. So instead we hold on to it, and
 set a timeout of 850ms. But before that timer triggers (at, for example,
 18:30:00.900), we get more data to send to clients. Still we wait—another
 100ms. No new data arrives in those 100ms so now we flush it and close the
 connection. The client gets two data items together.
Alternatively, how about if the client connects at 18:30:00.000, but
 the first new data comes through at 18:30:01.100 (1.1 seconds after the
 request started)? In that case we send it immediately and close the
 connection. In other words, the artificial latency is only being
 introduced when multiple messages come through in the space of a single
 second, which effectively means we only slow things down when there are a
 lot of messages. This is just what we want.
I suggest that if you do this, you have the minimum time easily
 customizable, so that you can easily experiment with values between 500
 and 2000 milliseconds.

What If JavaScript Is Disabled?

If JavaScript is disabled, then nothing described in this chapter works. When the user
 runs our minimal example, they will see “Preparing!” on screen for the
 rest of their natural lives. And it is nothing more than they deserve.
 Nothing described in any of the other chapters works either.
What’s that? You sympathize with them? Bah, humbug. But, yes, there
 is a way to send updates to these 20th-century-ers. We’re going to just
 modify the minimal_longpoll_example.html files, not the
 fuller FX price demo. First, add this immediately after the
 <head> tag:
<noscript>
 <meta http-equiv="refresh" content="0;URL=longpoll.nojs.php">
</noscript>
Because it is between the <noscript> tags, it
 does nothing for almost everyone. But, what it does is send our
 JavaScript-disabled users to another page. That other page is PHP, not
 HTML. That PHP script has to generate a full HTML page, not just send the
 data, as it can when called over Ajax. The code is quite
 straightforward:
<!DOCTYPE html>
<html>
 <head>
 <script>window.location.href="minimal_longpoll_test.html"</script>
 <meta http-equiv="refresh" content="3">
 <meta charset="utf-8" />
 <title>Update test when JS disabled</title>
 <head>
 <body>
 <p><?= date("Y-m-d H:i:s"); ?></p>
 <p>(Enable JavaScript for better responsiveness.)</p>
 </body>
</html>
The key line is <meta http-equiv="refresh"
 content="3">, which says “reload this page after 3 seconds.”
 After 3 seconds an HTTP request is made, and the PHP script will run again
 and create a new web page, with a new timestamp in it.
I’d also like to point out the <script> line at
 the top of that file. This is a clever little trick: if the
 users had just temporarily disabled JavaScript, then as soon they enable
 JavaScript, it will be detected on the very next page refresh and will
 take them back to your full-service live-updating site, where they will be
 welcomed to the 21st century with open arms.

Grafting Long-Poll onto Our FX Application

At the end of Chapter 5, we finished with a fairly
 robust demo application. It generates random FX data, with multiple
 symbols (multiplexing) and multifield data. It can maintain a history of
 all data received, and do interesting things with that history, such as
 charts and tables. It reconnects when things go wrong, and keeps track of
 the point up to which it’s seen data, as well as scheduled shutdowns and
 reconnects.
Luckily, to graft long-poll on to that existing application is not
 too much work. Did I just say luckily? In fact, the
 ease with which we can graft on an alternative delivery method is a direct
 result of all the little design decisions that were made in the previous
 few chapters.
Connecting

The FX application currently has an SSE object with a
 private variable called es and a function called
 startEventSource(). Our first task is to create the
 equivalent for long-poll.[25] Here are the new private variables added to the SSE
 object:
var xhr = null;
var longPollTimer = null;
As you can see, there is also a variable to store the timer handle
 (this is only used by disconnect()). And here are the
 functions we need to add:
function startLongPoll(){
if(window.XMLHttpRequest)xhr = new XMLHttpRequest();
else xhr = new ActiveXObject("Msxml2.XMLHTTP");
xhr.onreadystatechange = longPollOnReadyStateChange;
var u = url;
u += "longpoll=1&t=" + (new Date().getTime());
xhr.open("GET", u);
if(last_id)xhr.setRequestHeader("Last-Event-ID", last_id)
xhr.send(null);
}

function longPollOnReadyStateChange(){
if(this.readyState != 4)return;
longPollTimer = setTimeout(startLongPoll, 50);
processNonSSE(this.responseText);
}
The startLongPoll() function and its
 onreadystatechange callback are basically the same
 functions we saw earlier in this chapter, but with a few small
 differences:
	Use the url global, instead of hardcoding the
 URL to connect to.

	Pass the Last-Event-ID header, when
 last_id is set. See Sending Last-Event-ID. Unlike with
 EventSource, it is possible to send HTTP
 headers with XMLHttpRequest (and with Internet
 Explorer’s ActiveXObject too), and so we
 do.

	The processing is handed to processNonSSE(),
 which will be written shortly.

	longpoll=1 is added to the URL. This is so the
 backend knows to disconnect after sending data. (Remember, with
 long-poll the data does not get seen by the browser until the
 connection is closed.) By using this, we can have a single backend
 servicing the various frontend fallbacks.

	The timer handle is recorded, so the timer can be cancelled
 by other code.

One more small addition is needed. In
 temporarilyDisconnect() there are a couple of tidy-up
 tasks:
if(keepaliveTimer != null)clearTimeout(keepaliveTimer);
if(es)es.close();
We could just add
 if(xhr)xhr.abort();, but there will be more to do in the
 next chapter, so let’s move all three commands to a
 disconnect() function, and call that from
 temporarilyDisconnect(). So the two functions look like
 this:
function disconnect(){
if(keepaliveTimer){
 clearTimeout(keepaliveTimer);
 keepaliveTimer = null;
 }
if(es){
 es.close();
 es = null;
 }
if(xhr){
 xhr.abort();
 xhr = null;
 }
if(longPollTimer){
 clearTimeout(longPollTimer);
 longPollTimer = null;
 }
}

function temporarilyDisconnect(secs){
var millisecs = secs * 1000;
millisecs -= Math.random() * 60000;
if(millisecs < 0)return;
disconnect();
setTimeout(connect,millisecs);
}

Long-Poll and Keep-Alive

If you remember back to the section Client Side, you know our keep-alive
 system is set up to call connect() if we don’t get any
 activity on the connection after 20 seconds. This causes a problem for
 long-poll because there is no way for long-poll to send keep-alives: it
 sends one message and disconnects. Well, of course, the server will
 happily send the keep-alives, but our client won’t
 receive them.
Note
In those browsers where onreadystatechanged
 gets called for readyState==3 messages, we can get
 those keep-alives. But, if we can do that, then
 we would be using the XHR technique described in the next chapter,
 not bothering with the current long-poll technique.
See the longpoll_keepalive.php and longpoll_keepalive.html files in the
 book’s source code if you want to play around with this. It sends
 keep-alives every 2 seconds, then sends the real data after 10
 seconds and exits. See what you get, and when, in each browser. In
 Android 2.3 (the main need for long-poll, if you support mobile
 users), you will see the callback is called immediately for
 readyState==1, but then there is nothing for 10 seconds
 and states 2, 3, and 4 all come through together at the end.

So, if our long-poll does not send anything within 20 seconds,
 what happens? Something not good. startLongPoll gets called
 again, so now we have two sockets open to the server. If the server
 doesn’t send anything for hours we will have hundreds of sockets open.
 Really? Hundreds? Kind of. Remember that if the server is sending
 keep-alives, the sockets will all be active, and so won’t be getting
 killed off. But not hundreds, because browsers have a limit on the
 number of simultaneous connections, typically six. In a sense this is
 worse: after a short time there will be six long-poll connections open,
 new requests will quietly get put on a stack, and all other
 communication with that server (e.g., for new images) will also be put
 on hold.
By adding the following two highlighted lines, we can avoid this
 Armageddon scenario:
function startLongPoll(){
if(xhr)xhr.abort();
if(window.XMLHttpRequest)xhr = new XMLHttpRequest();
else xhr = new ActiveXObject("Msxml2.XMLHTTP");
xhr.onreadystatechange = longPollOnReadyStateChange;
var u = url;
u += "longpoll=1&t=" + (new Date().getTime());
xhr.open("GET", u);
if(lastId)xhr.setRequestHeader("Last-Event-ID", lastId)
xhr.send(null);
}

function longPollOnReadyStateChange(){
if(this.readyState != 4)return;
xhr = null;
longPollTimer = setTimeout(startLongPoll, 50);
processNonSSE(this.responseText);
}
When the onreadystatechange callback is called
 successfully, with data, xhr is set to null; this partners
 with the first line in startLongPoll(), which calls
 abort() if xhr has not been set to null. In
 normal operation, xhr will always be
 null when startLongPoll() is entered. It is only when
 it is called by a keep-alive timeout that xhr will
 not be null and instead will represent the previous connection. In other
 words, if the long-poll request does not reply within 20 seconds, abort
 it and make a fresh call.
Happy? I’m not. Long-poll has become not-very-long-poll. Every 20
 seconds we make a new connection. They were expensive enough as it was.
 OK. So how about we never use keep-alive when using long-poll? To
 understand if that is good or not, think about the reasons we have
 keep-alive in the first place:
	To stop some intermediate server or router closing our
 socket.

	To keep retrying if the initial request failed.

	To detect when the backend has gone wrong in such a way that
 the socket is being kept open. (This also covers the case of
 intermittent browser bugs.)

The first point is moot if we are going to shut down the socket
 ourselves every 20 seconds. But the second and third points are good and
 noble reasons, and I wouldn’t want to be without them in a production
 system. The third point is the troublesome one: there is simply no way
 to tell the difference between a server that has no message to send yet
 and a server that has gone into an infinite loop and is never going to
 reply. My suggestion is that you set a much higher number for keep-alive
 timeouts when using long-poll, because you don’t ever really expect that
 crash, do you? You can do this by simply adding this line:
function startLongPoll(){
keepaliveSecs = 300;
if(xhr)xhr.abort();
...
For the second point (retrying if the initial request fails), see
 the next section.

Long-Poll and Connection Errors

Our previous long-poll code was rather optimistic: it assumed the URL was
 correct, and the server would always be happy to receive our request.
 What if the server is offline for any reason? Or if the URL is bad? When
 either of those happen, your longPollOnReadyStateChange
 callback will quickly be called with readyState==4. You
 identify them by looking at the status element of the
 xhr object. Typical codes you will see are listed in Table 6-1.
Table 6-1. Common XMLHttpRequest status codes
	Status code	Meaning
	0	Connection issue, such as bad domain name
	200	Success
	304	It came from cache
	401	Authentication failed
	404	Server exists, but bad URL
	500	Server error

I hope you never see a 304, because that would defeat the whole
 point of streaming live data! A 401 is intercepted by the browser, which
 asks the user for his credentials, then sends the request again. You
 only receive a 401 in your code if the user clicks Cancel. Therefore, we
 treat everything except a “200” status code as an error. For all errors,
 we assume no valid data was sent, and we sleep 30 seconds[26] before trying to long-poll again. Only when the status
 code is 200 do we use the data and immediately long-poll again. With
 these changes, the onreadystatechange callback now looks
 like this:
function longPollOnReadyStateChange(){
if(this.readyState != 4)return;
xhr = null;
if(this.status == 200){
 longPollTimer = setTimeout(startLongPoll, 50);
 processNonSSE(this.responseText);
 }
else{
 console.log("Connection failure, status:"+this.status);
 disconnect();
 longPollTimer = setTimeout(startLongPoll, 30000);
 }
}
The call to disconnect() stops a couple of
 timers (longpollTimer and the keep-alive timer) to make
 sure nothing else will call startLongPoll() before
 those 30 seconds are up.
Note
If you really wanted to get clever, there are some status
 codes that have information in the payload. For instance, a 301
 tells us a new URL we should try. A 305 tells us a proxy we should
 be using. If you are connecting to a third-party system, you may
 need to handle some of these; hopefully they will give you
 instructions on which ones. Watch out for 420 and 429, which tell
 you that you are making your connection attempts too
 frequently.

Server Side

Relative to the previous version of the server-side script (fx_server.id.php) we need a few changes. The
 first couple are specific to long-poll; at the very top of the script,
 see if "longpoll" has been requested by the
 client:
$GLOBALS["is_longpoll"] = array_key_exists("longpoll",$_POST)
 || array_key_exists("longpoll",$_GET);
$GLOBALS["is_sse"] = !($GLOBALS["is_longpoll"]);
This is a nice, compact expression to assign either
 true or false to $is_longpoll. It
 only tests for the existence of longpoll in the input
 data (either in GET or POST data), not for its value. The second line
 says if it is not long-poll, then it must be SSE. The other part of this
 change is at the very end of the main loop:
 ..
 if($GLOBALS["is_longpoll"])break;
 }
Short and sweet. Just like a honey bee drone: one package
 delivered, and then it kills itself.
Note
I explicitly use the $GLOBALS[] array. This code
 and our main loop are both in the same scope (the global scope), so
 I could have assigned to the simpler $is_longpoll
 variable. But doing it this way means the code will still work if
 this code, or the main loop, gets refactored to its own function. It
 also documents the code: it screams “these are global variables” to
 the programmer who has to maintain this code in six months’
 time.

The other changes we make will be used for all our fallbacks.
 Previously you may remember we had these helper functions:
function sendData($data){
echo "data:";
echo json_encode($data)."\n";
echo "\n";
@flush();@ob_flush();
}

function sendIdAndData($data){
$id = $data["rows"][0]["id"];
echo "id:".json_encode($id)."\n";
sendData($data);
}
When we use the fallbacks, the bits specific to SSE (the
 data: prefix, the extra blank line at the end, and the
 separate id: row) are not needed, and in fact they get in
 the way. So why not drop them?
function sendData($data){
if($GLOBALS["is_sse"])echo "data:";
echo json_encode($data)."\n";
if($GLOBALS["is_sse"])echo "\n";
@flush();@ob_flush();
}

function sendIdAndData($data){
if($GLOBALS["is_sse"]){
 $id = $data["rows"][0]["id"];
 echo "id:".json_encode($id)."\n";
 }
sendData($data);
}
This means sendIdAndData() is now identical to
 sendData() for long-poll. That is fine. You can find this
 version as fx_server.longpoll.php
 in the book’s source code. (If your server code sends
 retry:, you also need to do the same thing.)
Note
If you wanted to make a polyfill, you
 would not do this. Instead, on the client side you would strip off
 “data:” on lines that start with it, and you would look out for
 lines that start with anything else and ignore them.

One final change. Replace this line:
header("Content-Type: text/event-stream");
with:[27]
if($GLOBALS["is_sse"])header("Content-Type: text/event-stream");
else header("Content-Type: text/plain");

Dealing with Data

Let’s go back to the frontend and the processNonSSE() function we
 introduced earlier. This function is used in the next chapter, too. It
 does a couple of jobs that are done by the browser for us when using
 SSE:
function processNonSSE(msg){
var lines = msg.split(/\n/);
for(var ix in lines){
 var s = lines[ix];
 if(s.length == 0)continue;
 if(s[0] != "{"){
 s = s.substring(s.indexOf("{"));
 if(s.length == 0)continue;
 }
 processOneLine(s);
 }
}
To see the first job more clearly, here is a cut-down
 version:
function processNonSSE(msg){
var lines = msg.split(/\n/);
for(var ix in lines){
 processOneLine(lines[ix]);
 }
}
The SSE protocol always gives our callback exactly one message at
 a time. With long-poll we might have been given multiple
 messages.[28] So the preceding code breaks up the lines and processes
 each separately. But this cut-down version is naive and
 dangerous.
Our application protocol is exactly one JSON object per message,
 which also implies one line (CR and LF have to be escaped in JSON). But
 do you remember the SSE protocol? It finishes each message with a blank
 line. So the next thing we do is look for blank lines (if(s.length
 == 0)) and throw them away (continue).
What about the if(s[0] != "{") block? This is a
 Dirty Data Defense. process_one_line()
 expects JSON, whole JSON, and nothing but JSON. If it gets anything
 else, it will throw an exception when it comes to parse it. In fact, it
 expects JSON representing an object, which means it must start with
 { and end with }. If there is any junk to the
 left of the opening curly bracket (if(s[0] != "{")), the
 s.substring(s.indexOf("{")) line strips it away. And if
 that leaves nothing, then skip it completely. (By the way, this
 particular Dirty Data Defense was added as part of the iframe support of
 the next chapter; I’ve not seen long-poll trigger it.)

Wire It Up!

The last step is easy. Add the following highlighted line to
 connect(), then go and test it in a browser that does not
 support SSE:
function connect(){
gotActivity();
if(window.EventSource)start_eventsource();
else startLongPoll();
}
How do we test long-poll (or any of our later fallbacks) on a
 browser that already supports SSE? Rather than mess around with
 commenting clauses out, I recommend slapping some temporary code in at
 the top of the connect() function, like this:
function connect(){
gotActivity();

if(true)startLongPoll();else //TEMP

if(window.EventSource)start_eventsource();
else startLongPoll();
}
I like to use those blank lines on each side, and the comment, to
 make it stand out and therefore hard to forget. (This temporary line to
 force long-poll is included in fx_client.longpoll.html; please experiment
 with removing it.)

IE8 and Earlier

The code we have up to this point works fine in just about every
 browser, including Android 2.x. Sigh, not IE8. The only issue in IE8 is
 that Object.keys is not available. (This is used in the
 makeHistoryTbody() function introduced in Adding a History Store.) To add support, use the following
 block of code; insert it in the <head> of the
 page:
<script>
Object.keys=Object.keys || function(o,k,r){
 r=[];
 for(k in o)if(o.hasOwnProperty(k))r.push(k);
 return r;
 }
</script>
If Object.keys is natively supported, it will use that:
 Object.keys=Object.keys. Otherwise the rest of this block
 of code assigns a simple function to Object.keys, which
 iterates through the properties of the given object and adds them to an
 array. The hasOwnProperty is to avoid including any keys
 that have been added to the Object prototype. Search
 online or refer to an advanced JavaScript book if you want to understand
 that more deeply.

IE7 and Earlier

Object.keys was missing in IE6, IE7, and IE8. But
 there is still one more thing missing in IE6 and IE7: JSON. The
 JSON object is built into modern browsers (including IE8
 and later) and gives us parse() and
 stringify() objects. Our code only needs
 JSON.parse(), so if you are seriously bandwidth-sensitive,
 you could strip down this solution. But this only affects IE6 and IE7
 users, who by now must be so glad simply to find a website that still
 supports them that they won’t care about an extra file load, so I am
 going to use the readily available json2.js file.
Note
This file is in the book’s source code, or you can get it from
 https://github.com/douglascrockford/JSON-js.
Actually I am using a minified version, which reduces the file
 from 17,530 to 3,377 bytes.

Now, IE6 and IE7 represent maybe 1% of your users, so it is
 unreasonable to expect the other 99% to have to download a patch that
 they don’t need. (It does no harm; it is designed to only create the
 JSON object when one does not already exist, but it is a
 waste of bandwidth for both you and your users.) So I chose to use IE’s
 special version detection. This is an IE-only feature (which actually
 disappeared as of IE10), but is ideal for our purposes:
<!--[if lte IE 7]>
<script src="json2.min.js"></script>
<![endif]-->
IE7 and earlier will process that
 <script> command and load, then run, json2.min.js. IE8 and IE9 will process the
 command but not do anything. All other browsers will just see this as an
 HTML comment and ignore it completely.
Overall, for all the modern browsers, including IE9 and later, we
 waste 198 bytes on patching IE8 and earlier. IE6 and IE7 have a further
 3,377 bytes to load.

The Long and Winding Poll

In this chapter we have looked at more primitive mechanisms that can
 be used as an alternative to SSE. Regular polling might sometimes be a
 better choice than SSE if you only need sampling (as opposed to full
 history), or if latency is not important (e.g., if you can wait every 5
 minutes for a batch of “latest” data; that way each client won’t be
 holding open a socket). Then we looked at long-poll. Its great advantage
 is that it works on any OS/browser where Ajax works; and that is just
 about everywhere nowadays. Its disadvantage is that for every message
 received, there is an extra HTTP request involved. The good news is that
 for some browsers, there are more efficient choices—this is the subject of
 the next chapter.

[25] The es and xhr variables are
 exclusive. In other words, either a browser will use
 es and xhr will always be null, or it will
 use xhr and es will always be null. So
 they could share the same variable name, perhaps called
 server. I have chosen not to, to emphasize that each
 holds a different type of JavaScript object. Another reason to use
 different names is for when closing them: es.close()
 but xhr.abort().

[26] This assumes keep-alive, when using long-poll, has been set to
 higher than 30 seconds. See Long-Poll and Keep-Alive. Otherwise the
 keep-alive will trigger first, which will then be interrupted by our
 30-second timeout—which is not good.

[27] Did you think the Content-Type ought to be
 application/json instead of text/plain?
 The code we are writing here is for workarounds for browsers that
 are nowhere near the bleeding edge. Not the time for the semantic
 network soapbox. More seriously, the data we are sending is not
 strictly JSON. When we send 2+ data items together, it is two JSON
 strings separated by an LF. Each of those lines only turns into JSON
 inside the processOneLine() function.

[28] OK, fx_server.longpoll.php does not send
 multiple messages. But we could; look at the suggestions in Optimizing Long-Poll. And in the next chapter,
 multiple messages happen whether we want them to or not.

Chapter 7. Fallbacks: There Has to Be a Better Way!

In the previous chapter we looked at long-poll as a way to push data
 from server to clients that do not support SSE. Its advantage over SSE is
 that it works just about everywhere, and its disadvantage is that the
 slightly higher latency and slightly higher bandwidth use can become
 significant for high-frequency updates. In this chapter we will look at two
 alternatives that are almost as good as native SSE, from the latency and
 bandwidth point of view.
The first fallback we look at uses Ajax, just as long-poll did, but using readyState
 == 3, instead of readyState == 4. In a nutshell it means
 we get each piece of data as the server pushes it out, while the connection
 is still alive, in contrast to long-poll where we don’t see any of the data
 until the server closes the connection. (If you skipped over the sidebar
 Ajax readyState, this might be a fine time to go
 back and review what the Ajax readyState values mean.)
This is a nice approach, only slightly less efficient than SSE, so it
 is ironic that it gives us hardly any more desktop browser
 coverage.[29] Why? Because most of the browsers where it works already have
 native SSE support! However, this technique does work in Android 4.x
 (representing about two-thirds of Android users at the time of
 writing).
The second fallback is specifically for Internet Explorer 8 and above. There is nothing particularly
 IE-specific in the technique, so it is strange that it either does not work,
 or only works with some hacks in each of Firefox, Chrome, Safari, and Opera. But we already have native
 SSE for those browsers, so who cares? The key thing about this technique is
 that adding IE8/IE9/IE10 support gives us 28% more browser
 coverage.[30]
Commonalities

As in Chapter 6, I will introduce the techniques
 as a minimal example first, before grafting them onto the FX demo. I will
 use the same backend for both techniques (XHR and iframe) that are being
 introduced in this chapter. See abc_stream.php in the book’s source code, which
 looks like this:
<?php
header("Content-Type: text/plain");

if(array_key_exists("HTTP_USER_AGENT",$_SERVER)
 && strpos($_SERVER["HTTP_USER_AGENT"],"Chrome/") !== false)
 echo str_repeat(" ",1023)."\n";
@ob_flush();@flush();

$ch = "A";
while(true){
 echo json_encode($ch.$ch)."\n";
 @ob_flush();@flush();
 if($ch == "Z")break;
 ++$ch;
 sleep(1);
 }
?>
We output the MIME type as text/plain. Note that we cannot use
 the text/event-stream that we use with
 SSE because browsers that don’t support SSE don’t know it, so they ask the
 user if they want to save it as a file!
The next line outputs exactly 1,024 bytes of whitespace. It is only
 needed for the Chrome browser, so here I use
 a user-agent check (array_key_exists("HTTP_USER_AGENT",$_SERVER) asks if we have been told a
 user-agent, and strpos($string,$substring)! == false is PHP’s
 partial string-matching idiom, asking if $substring is found
 anywhere in $string).
After that, the rest of the code is easy: we output 26 strings, each
 one second apart. After 26 seconds we close the connection (simply so you
 can see how the browsers react when this happens). Just like in all the
 SSE code we created in earlier chapters, the
 @ob_flush();@flush(); idiom is used to make sure the content
 is sent immediately and not buffered.
Note
SSE has worked since Chrome 6, and it is one of the browsers that
 automatically upgrades itself, so realistically no one is still using a
 version of Chrome that needs any of these fallback techniques. But you
 will need this 1,024-bytes-of-whitespace code if you want to follow
 along with this chapter using Chrome. I also wanted to show this because
 it is a useful troubleshooting technique: when something does not work
 in a particular browser, a bunch of whitespace can often work
 wonders.[31]
By the way, none of these buffering tricks could get any of the
 examples in this chapter to work with Opera 12! (But Opera has supported
 SSE since Opera 11.0, so we can live with that.)

On the frontend, one thing that both techniques introduced in this
 chapter have in common is that we don’t get a new message each time the
 backend sends a new message. Instead, we get a long string holding
 all messages since we connected. This string gets
 longer and longer as time goes on. This creates two challenges for
 us:
	Extract just the new message(s).

	Avoid excessive memory usage.

For the first of those, we use the following function, where
 s is the full data received so far, prevOffset
 is where we have read up to so far (0 on the first call), and
 callback is the function that will process one message. The
 function returns the new furthest point processed, and that is what you
 pass in as prevOffset on the next call. If there was no new
 data, the input value of prevOffset ends up getting
 returned:
function getNewText(s,prevOffset,callback){
 if(!s)return prevOffset;
 var lastLF = s.lastIndexOf("\n") + 1;
 if(lastLF == 0 || prevOffset == lastLF)return prevOffset;
 var lines = s.substring(prevOffset,lastLF - 1).split(/\n/);
 for(var ix in lines)callback(lines[ix]);
 return lastLF; //Starting point for next time
 }
This also shows one other thing we have to be careful of (that SSE
 took care of for us, and was never an issue with long-polling): it is
 possible to get half a message. If you recall from Chapter 3, we decided on a protocol of one JSON message per
 line. If the server sends the message {"x":3,"y":4}\n, we
 will almost always receive {"x":3,"y":4}\n. But it is not
 guaranteed. We might get {"x":3,"y. Then
 a short while later our Ajax callback is called again and this time we get
 ":4}\n, so that s now equals
 {"x":3,"y":4}\n. Once we know this might happen, of course,
 dealing with it is easy: simply look for the last LF in the input string,
 and ignore anything after that for the moment. That is what the
 s.lastIndexOf("\n") piece of JavaScript does. (The
 +1 is because it returns the index of the
 \n, and next time we want to start from just
 after that character.)
By comparing prevOffset with lastLF, we
 find out if we have any new data (which implies we have at least one whole
 new line). s.substring(prevOffset,lastLF-1) extracts just the
 new data. Then .split(/\n/) breaks it apart into one array
 entry per line. Finally, we can call our callback once for each line
 found.
What about the memory overflow challenge? This involves simply
 watching the size of the string, and once it gets rather large, killing
 the connection and reconnecting. You can decide the definition of “rather
 large” on a case-by-case basis, but I tend to use 32,768 unless I have a
 good reason not to. (What would be a good reason? For instance, if I was
 sending large blocks of data, and 32KB might fill up with just two or
 three messages.) This is not shown in our simple implementations for XHR
 and iframe, but will be shown when we graft them onto the FX application
 later in this chapter.

XHR

If you have already studied the long-poll code, there is not that much new to
 actually say about this code. We prepare an
 XMLHttpRequest object (because this code won’t ever
 work with Internet Explorer 6, I don’t bother with the check for
 XMLHttpRequest not being available), connecting to
 abc_stream.php, and setting the
 onreadystatechange() function. We call send()
 with a 50ms delay, for the sake of Safari (just as in the long-poll code);
 if we don’t do this it all works, but it shows the “spinning circle” busy
 cursor all the time. We also add a custom variable to the xhr
 object, called prevOffset.
So, let’s take a closer look at the onreadystatechange
 function. It does two things. First, it creates a log of each time it is
 called, which it appends to <pre id="x"> (we use a
 <pre> so you can see the carriage returns). By the way,
 if we get called with no new content, it returns immediately. Then the
 last line of our onreadystatechange function uses
 getNewText(), which we developed earlier in this chapter.
 That will fill in <p id="latest"> with the most recent
 line received. The code is as follows:
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Simple XHR Streaming Test</title>
 <script>
 function getNewText(s,prevOffset,callback){
 if(!s)return prevOffset;
 var lastLF = s.lastIndexOf("\n")+1;
 if(lastLF == 0 || prevOffset == lastLF)return prevOffset;
 var lines = s.substring(prevOffset, lastLF - 1).split(/\n/);
 for(var ix in lines)callback(lines[ix]);
 return lastLF; //Starting point for next time
 }

 function process(line){
 document.getElementById("latest").innerHTML = line;
 }
 </script>
 </head>
 <body>
 <p id="latest">Preparing...</p>
 <hr/>
 <pre id="x">Preparing...</pre>
 <script>
 var s="",s2prev="";
 var xhr = new XMLHttpRequest();
 xhr.prevOffset = 0;
 xhr.open("GET", "abc_stream.php");
 xhr.onreadystatechange = function(){
 var s2 = this.readyState + ":" +
 this.status + ":" + this.responseText;
 if(s2 == s2prev)return;
 s2prev = s2;
 s += s2 + "
\n";
 document.getElementById("x").innerHTML = s;
 this.prevOffset = getNewText(
 this.responseText,this.prevOffset,process);
 };

 setTimeout(function(){xhr.send(null)}, 50);
 </script>

 </body>
</html>
So, put simple_xhr_test.html
 and abc_stream.php in the same
 directory, and open them in a supporting browser. You should see something
 like:
"CC"

1:0:

2:200:

3:200:"AA"

3:200:"AA"
"BB"

3:200:"AA"
"BB"
"CC"
After 26 seconds, you will see "ZZ" at the top of
 the screen. At the bottom, you will see these two sections:
3:200:"AA"
"BB"
"CC"
"DD"
...
"YY"
"ZZ"

4:200:"AA"
"BB"
"CC"
"DD"
...
"YY"
"ZZ"
You can see that you get all of "AA" to
 "ZZ" in readyState==3; then when the
 backend server shuts the connection, you get sent a
 readyState==4 signal, too.
This seems a good time to point out that opening abc_stream.php directly in most browsers has
 surprising behavior: you don’t see "AA", then
 "AA" "BB". Instead it sits there doing nothing for 26
 seconds, then suddenly shows all of "AA" to
 "ZZ". You only get to see the partially loaded data
 when using XMLHttpRequest. In fact, this is exactly why
 the iframe technique, which I’ll introduce next, does not really work in
 those browsers.

iframe

The XHR technique shown in the previous section does not work in Internet Explorer: the problem is that IE does not set the
 xhr.responseText variable until
 xhr.readyState is 4! The whole point of the XHR technique was
 that the xhr.readyState never reaches 4. So this is a
 fatal blow. But all is not lost. The trick we use with Internet Explorer
 is to load that data into a dynamically created
 <iframe>, and then we go and look at the source of that
 iframe! The first time I heard that idea, I was so impressed I jumped out
 of my chair and went to explain it to my cat. Yes, people deal with
 excitement in different ways. Cats too, as it turns out.
This fallback appears to work in most browsers, not just IE
 variants, but different browsers require a differing amount of data to be
 received from the server before they will make the data available. In
 IE6/7/8, only a few bytes need to be received before it starts working,
 and unless your messages are short, you should not need to worry about
 it.
But to follow along with this chapter in other browsers, you will
 need some extra hackery. In Chrome the requirement appears to be 1,024
 bytes, just like it was in the XHR technique we looked at earlier. Our
 abc_stream.php script already sends
 out that much whitespace for Chrome. In Firefox it needs 2,048 bytes (so
 for a while I didn’t realize this technique even worked in Firefox), which
 wasn’t needed for the XHR technique. Add the highlighted line shown here
 to abc_stream.php to have it work
 immediately in Firefox too:
header("Content-Type: text/plain");

if(array_key_exists("HTTP_USER_AGENT", $_SERVER)
 && strpos($_SERVER["HTTP_USER_AGENT"], "Chrome/")!==false)
 echo str_repeat(" ",1023)."\n";
if(array_key_exists("HTTP_USER_AGENT", $_SERVER)
 && strpos($_SERVER["HTTP_USER_AGENT"], "Firefox/")!==false)
 echo str_repeat(" ",2047)."\n";
@ob_flush();@flush();

...
Note
Remember: I do not use the preceding code in the main FX
 application, because Chrome and Firefox will never need to use either the
 iframe or the XHR fallback techniques; they will always use native
 SSE. These hacks are just so you can follow along with this section
 without having to use Internet Explorer.

If you were paying attention, I casually mentioned that the data is
 available in IE6, IE7, and IE8. Hang on…didn’t I say earlier that this
 technique only works in Internet Explorer 8? The problem is that Internet
 Explorer 7 and earlier do not allow us to access the contents of a child
 iframe from JavaScript. The test we can do to see if we can access an
 iframe’s contents is:
if(window.postMessage){ /* OK */ }
windows.postMessage returns true in Internet Explorer 8 and above, false in Internet
 Explorer 7 and earlier.
Note
The developer tools in IE10 and later have a compatibility mode that allows it to
 pretend it is IE9, IE8, or IE7. When it is pretending to be IE7,
 windows.postMessage returns true, meaning the iframe will
 appear to work in IE7. I believe this is a bug/limitation of IE10’s
 compatibility mode, nothing more.

The iframe technique is inferior to the XHR technique in one
 particular way: we have to poll. But this is a different type of polling
 from that introduced in Chapter 6, because we are not
 polling the server. Instead, we are polling for changes in an iframe. It
 is completely localized polling, and relatively quick and light. But it
 still adds a bit of latency. In other words, the new messages get pushed
 from server to client immediately, but it takes us a little while to
 discover and process the new message. In the example shown here, we use
 setInterval(...,500), which means we look for new messages
 every 500ms. So, the mean latency we add is 250ms. If
 we reduce the setInterval interval to 100ms, then the mean
 latency introduced is reduced to 50ms. The downside is more CPU use on the
 client for the extra polling. You need to balance the latency needs of
 your application against the desired CPU usage on the client. The code is
 as follows:
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Simple IFrame-Streaming Test</title>
 <script>
 function getNewText(s,prevOffset,callback){
 if(!s)return prevOffset;
 var lastLF = s.lastIndexOf("\n")+1;
 if(lastLF == 0 || prevOffset == lastLF)return prevOffset;
 var lines = s.substring(prevOffset, lastLF - 1).split(/\n/);
 for(var ix in lines)callback(lines[ix]);
 return lastLF; //Starting point for next time
 }
 </script>
 </head>
 <body>
 <p id="latest">Preparing...</p>
 <hr/>
 <pre id="x">Preparing...</pre>
 <script>
 function connectIframe(){
 iframe = document.createElement("iframe");
 iframe.setAttribute("style", "display: none;");
 iframe.setAttribute("src", "abc_stream.php");
 document.body.appendChild(iframe);
 var prevOffset = 0;
 setInterval(function(){
 var s = iframe.contentWindow.document.body.innerHTML;
 prevOffset = getNewText(s,prevOffset,function(line){
 document.getElementById("latest").innerHTML = line;
 });
 document.getElementById("x").innerHTML = s;
 }, 500);
 }

 if(window.postMessage){
 document.getElementById("x").innerHTML = "OK";
 setTimeout(connectIframe, 100);
 }
 else{
 document.getElementById("x").innerHTML = "Sorry!";
 }
 </script>

 </body>
</html>
Starting at the bottom of this code, we look for
 window.postMessage, and if it exists we call
 connectIframe(): there has to be a 100ms delay, otherwise we
 get an HTML parsing error when we try to create the iframe. In
 connectIframe, the first four lines create an
 <iframe> dynamically, with display:none
 CSS to make it invisible, and the src set to our streaming
 data source. Then we use setInterval to set up a regular
 timer, and every 500ms we fetch the contents of the iframe. Just as in the
 XHR demo in the previous section, we put all contents so far in the
 "x" element, and just the most recent message in the
 "latest" element.
Put simple_iframe_test.html in
 the same directory as abc_stream.php
 and open it in IE8 or above, and you should see the “latest” element
 changing every second.

Grafting XHR/Iframe onto Our FX Application

The steps to do this will be very similar to how we grafted long-poll onto
 the FX application in Chapter 6. There are some minor
 backend changes, and we add some frontend code that looks like the simple
 code introduced earlier in this chapter, as well as the feature-detection
 code to wire it up.
XHR on the Backend

Do you remember this code from Chapter 6?
$GLOBALS["is_longpoll"] = array_key_exists("longpoll",$_POST)
 || array_key_exists("longpoll",$_GET);
$GLOBALS["is_sse"] = !($GLOBALS["is_longpoll"]);
Our clients (both XHR and iframe) will identify themselves as
 using XHR, so modify it as follows:
$GLOBALS["is_longpoll"] = array_key_exists("longpoll",$_POST)
 || array_key_exists("longpoll",$_GET);
$GLOBALS["is_xhr"] = array_key_exists("xhr",$_POST)
 || array_key_exists("xhr",$_GET);
$GLOBALS["is_sse"] = !($GLOBALS["is_longpoll"] || $GLOBALS["is_xhr"]);
There is nothing else to do server side. The format of the data
 that is pushed is identical to that using long-poll. Basically
 xhr is given solely to set the correct MIME type (text/plain and not
 text/event-stream, because the latter will cause some
 browsers to prompt for the user to save it to an external file). (The
 file with the preceding addition is found in the book’s source code as
 fx_server.xhr.php).

XHR on the Frontend

Add the following block of code to the fx_client.longpoll.html file we had as of the
 end of the previous chapter:
function getNewText(s,prevOffset){
if(!s)return prevOffset;
var lastLF = s.lastIndexOf("\n") + 1;
if(lastLF == 0 || prevOffset == lastLF)return prevOffset;
var lines = s.substring(prevOffset, lastLF - 1).split(/\n/);
for(var ix in lines)processNonSSE(lines[ix]);
return lastLF; //Starting point for next time
}

function startXHR(){
if(xhr)xhr.abort();
xhr = new XMLHttpRequest();
xhr.prevOffset = 0;
xhr.onreadystatechange = function(){
 this.prevOffset = getNewText(
 this.responseText,this.prevOffset);
 };
var u = url;
u += "xhr=1&t=" + (new Date().getTime());
xhr.open("GET", u);
if(last_id)xhr.setRequestHeader("Last-Event-ID", last_id)
xhr.send(null);
}
The getNewText function is as we saw earlier, but
 instead of taking a callback as a parameter we hardcode
 processNonSSE() as the callback. This is used for both the
 XHR and iframe techniques (and, you may remember, is also being used by
 long-poll). The startXHR() function is similar to the
 simple example we made earlier in the chapter, but ironically it is
 actually simpler: there is no messing around reporting the various
 xhr.readyState values; we use one line to process them all.
 When readyState is 0, 1, or 2,
 responseText is empty, so getNewText
 will do nothing (and return 0). Note that it copes with the case where
 xhr.responseText is null. xhr is
 a private variable, of the SSE object, that was defined in
 the previous chapter.
If the server closes the connection and
 readyState is 4, then there are two possible
 situations. Either there was no new data since the last call to
 onreadystatechange, or there was new data (perhaps we had
 previously received half a message, and were just waiting for the final
 few bytes and the LF). Either way, getNewText() does the
 right thing. It is the kind of function you can take home to meet the
 family, without having to worry about it embarrassing you.

Iframe on the Frontend

First add another private variable to our SSE object, next to
 where we define es and xhr:
var iframe = null;
Note
As mentioned in the previous chapter, es,
 xhr, and iframe are exclusive, meaning
 they could all be named server, or something, and share
 the same variable. I chose to use three distinct private variables
 in this book for code clarity.

Then add this function:
function startIframe(){
var u = url;
u += "xhr=1&t=" + (new Date().getTime());
iframe = document.createElement("iframe");
iframe.setAttribute("style", "display: none;");
iframe.setAttribute("src", u);
document.body.appendChild(iframe);
var prevOffset = 0;
setInterval(function(){
 if(!iframe.contentWindow.document.body)return;
 var s = iframe.contentWindow.document.body.innerHTML;
 prevOffset=getNewText(s, prevOffset);
 }, 500);
}
This is basically the same code we saw earlier in the chapter, but
 using the global URL, and with the logging code cut out. It needs a bit
 of enhancing to be production-ready, though. First pass the
 lastId variable (done in the URL, not as a header). The
 other changes, shown next, are to tidy up from a previous call when this
 function is called a second time (and you remember that happens when our
 keep-alive mechanism has had to kick in):
function startIframe(){
if(iframe)iframe.parentNode.removeChild(iframe);
if(iframeTimer)clearInterval(iframeTimer);
var u = url;
if(last_id)u += "last_id="
 + encodeURIComponent(last_id) + "&";
u += "xhr=1&t=" + (new Date().getTime());
iframe = document.createElement("iframe");
iframe.setAttribute("style", "display: none;");
iframe.setAttribute("src", u);
document.body.appendChild(iframe);
var prevOffset = 0;
iframeTimer = setInterval(function(){
 var s = iframe.contentWindow.document.body.innerHTML;
 prevOffset = getNewText(s, prevOffset);
 }, 500);
}
This also needs one more private variable: var iframeTimer =
 null;.

Wiring Up XHR

The connect() function currently looks like:
function connect(){
gotActivity();
if(window.EventSource)startEventSource();
else startLongPoll();
}
Add this line:
function connect(){
gotActivity();
if(window.EventSource)startEventSource();
else if(window.XMLHttpRequest &&
 typeof new XMLHttpRequest().responseType != "undefined")
 startXHR();
else startLongPoll();
}
The browser detection is a little complicated. What we need for
 this to work is XMLHttpRequest2. The
 first part of the change to the function checks if
 XMLHttpRequest is defined. Just about every single browser
 will return true for this, as this is defined in the first version of
 XHR. When XHR got a bunch of new features the designers decided against
 calling the enhanced object XMLHttpRequest2, so it is still
 called XMLHttpRequest. Unfortunately they also decided
 against any kind of version number. There is also no object directly
 related to the XMLHttpRequest2 functionality we are using. Humbug. So,
 we are left with testing by coincidence: all browsers[32] that define a responseType element on their
 XMLHttpRequest objects also give us access to the
 responseText data in readyState==3.
Note
To force using XHR on browsers that support SSE, for testing
 purposes, put this at the top of connect():
if(true)startXHR();else

Wiring Up Iframe

If you thought the feature detection for XHR was complicated, you ain’t seen
 nothing yet. The feature detection for the iframe technique is in two
 parts. The first part goes at the top of the HTML file. We met Internet
 Explorer’s special macro language in the previous chapter. Here we use
 it to set a JavaScript global to true for IE9 and earlier, and false for
 everyone else. (We don’t use iframe for IE10 and later because the XHR
 technique works, which is lucky because the special IE macro language no
 longer does!) Near the top of the <head> part of the
 HTML file add the highlighted code (the other code shown here is what we
 already had in fx_client.longpoll.html):
<script>var isIE9OrEarlier = false;</script>
<!--[if lte IE 7]>
<script src="json2.min.js"></script>
<![endif]-->
<!--[if lte IE 9]>
<script>
isIE9OrEarlier = true;
</script>
<![endif]-->
<script>
Object.keys=Object.keys || function(o,k,r){
 r = [];
 for(k in o)if(o.hasOwnProperty(k))r.push(k);
 return r;
 }
</script>
Now with our new isIE9OrEarlier global in our grubby
 little hands, add the following lines to connect():
function connect(){
gotActivity();
if(window.EventSource)start_eventsource();
else if(isIE9OrEarlier){
 if(window.postMessage)startIframe();
 else startLongPoll();
 }
else if(window.XMLHttpRequest &&
 typeof new XMLHttpRequest().responseType != "undefined")
 startXHR();
else startLongPoll();
}
In plain English: if IE9 and earlier, then either use iframe (i.e., IE8 and IE9, because only
 they have the window.postMessage function defined) or
 long-poll (i.e., for IE5.5, IE6, and IE7). If IE10 or IE11, then fall
 through and use XHR instead.
Note
For completeness I should tell you that to force testing of the
 iframe technique on browsers that support SSE, put this at the top of
 connect():
if(true)startIframe();else

One more change is to add a couple more clauses to the disconnect() function:
function disconnect(){
if(keepaliveTimer){
 clearTimeout(keepaliveTimer);
 keepaliveTimer = null;
 }
if(es){
 es.close();
 es = null;
 }
if(xhr){
 xhr.abort();
 xhr = null;
 }
if(longPollTimer){
 clearTimeout(longPollTimer);
 longPollTimer = null;
 }
if(iframeTimer){
 clearTimeout(iframeTimer);
 iframeTimer = null;
 }
if(iframe){
 iframe.parentNode.removeChild(iframe);
 iframe = null;
 }
}

Thanks for the Memories

What was it I forgot? I’m sure there was something. Sigh, my memory just gets worse…that
 was it! Memory management! Both the XHR and iframe approaches are storing
 all messages sent by the server; basically it is one big message under the
 surface. This wasn’t a problem with SSE because the
 EventSource object treats each message separately, and wasn’t
 a problem with long-poll because each message was a complete connection.
 If you run a script for long enough, it is going to be a problem for XHR
 and iframe, though: the buffer is going to keep getting larger and larger
 until it starts to drag down the client system.
The solution is as simple as it is crude: when the one big message
 gets too big, make a fresh connection. There are some downsides, and it is
 fair to say that the lack of this issue is the biggest advantage native
 SSE has over the XHR fallback. Before examining the downsides, let’s look
 at the code. It involves the addition of code to getNewText()
 (which is used by both XHR and iframe, but not used by native SSE and not
 used by long-poll), and nowhere else:
function getNewText(s,prevOffset){
var lastLF = s.lastIndexOf("\n")+1;
if(lastLF == 0 || prevOffset == lastLF)return prevOffset;
var lines = s.substring(prevOffset, lastLF - 1).split(/\n/);
for(var ix in lines)processNonSSE(lines[ix]);

if(lastLF > 65536){
 console.log("Received " + lastLF +
 " bytes (" + s.length + "). Will reconnect.");
 disconnect();
 setTimeout(connect, 1);
 }

return lastLF; //Starting point for next time
}
In other words, once the buffer is over 64KB, disconnect,
 then connect again. The call to connect() is done on a 1ms
 timer just to avoid potential problems with recursive calls.
The first downside to point out is that the choice of 64KB is
 arbitrary. It takes about 2.5 minutes for the FX demo to fill it. If each
 message is bigger, or the messages come through more quickly, you might
 want to increase the buffer size. If all your users are on desktop
 machines, you could increase it by 10 times or more; even on a mobile
 device, 64KB is not that big.
The second downside is that any half-messages get lost—remember the
 discussion from earlier that led us to use
 s.lastIndexOf("\n"). These half-messages are going to be rare
 (hopefully), so you could change the condition to be if(lastLF >
 65536 && lastLF == s.length), telling it to always wait for
 a clean point to break the connection. Just bear in mind that this means
 that theoretically it could never disconnect (causing a memory
 issue).
The third issue is the same problem we had with long-poll: we might
 miss a message during the time between the disconnect and the next
 connect. However, if we send the lastId received (as we
 do in the FX demo), then the second and third downsides become
 neutralized: we don’t end up missing anything, and all we have is a bit of
 inefficiency.

Putting the FX Baby to Bed

And so that finishes the FX application we have been developing over
 the past five chapters—99+% browser coverage, with the most efficient
 available technique we can find for each of those users (if you lost track
 of which users are using which technique, see Table 7-1 in the following sidebar), for a
 realistically complex data-push application, dealing with production
 issues like servers and sockets disappearing on us, scheduled shutdowns,
 and more.
In Chapter 9, the FX application will be revived
 when we look at authentication and other security-related issues. But
 before that, there are a few aspects of SSE that we have not used, and these will be covered in the next
 chapter.
Who Ends Up Where?
Table 7-1 summarizes how the browser
 detection works.
Table 7-1. Which start() function to use, based on user’s
 browser
	Function	Browser
	startEventSource()		Basically all Firefox and Chrome[a]

	Desktop Safari 5.0+

	iOS Safari 4.0+

	Android 4.4+ (earlier where Chrome is default
 browser)

	Chrome for Android (all versions)

	Firefox for Android (all versions)

	Opera since 11.0

	Opera Mobile since 11.1

	BlackBerry since 7.0

	startXHR()		IE10+

	Firefox 3.6 (and earlier)

	Safari 3.x

	Android 4.1 to 4.3 (unless Chrome is default
 browser)

	Android 3.x

	startIframe()		IE8

	IE9

	startLongpoll()		IE6

	IE7

	Android 2.x

	Anything else not in the preceding list that has
 Ajax support

	(none)		Any browser with JavaScript disabled

	[a] Technically since Firefox 6 and Chrome 6, but
 they have been auto-updating since Firefox 4, and
 Chrome since it came out of beta, so you can
 reasonably expect no one is still using versions
 that do not support SSE.

[29] The only desktop browsers it adds for us are Firefox 3.x and
 Safari 3.x.

[30] At the time of writing, and based on global stats. Also, you could
 say we already had IE8+ support, because the long-poll approach of Chapter 6 works, too. Rephrasing for pedants: for another
 28% of users, it gives us a solution that is almost as efficient as
 native SSE.

[31] What is more, when prefixing, some whitespace does make a difference—it is a strong hint
 that there is browser optimization, typically caching, to
 blame.
On that theme, there is a way to get the XHR technique to work in Android 2.x, not just Android
 4.x! Change the echo json_encode($ch.$ch)."\n"; line
 (which outputs exactly 3 bytes) to echo
 json_encode($ch.$ch).str_repeat(" ",1021)."\n";, (which
 outputs exactly 1,024 bytes). Yep, 210
 bytes. Smells like a buffer to me. But this is a really nasty hack,
 because every single message we send has to be padded. If the
 messages you want to send just happen to be that big, and you are
 latency sensitive, bandwidth sensitive, and
 sending quite frequent messages (meaning using long-poll for the
 Android 2.x users leaves you dissatisfied), then this may be just
 what you want. For the rest of us, it is better just to use
 long-poll for Android 2.x.

[32] Okay, all browsers that I have tried it on. Remember, out
 there in the real world this fallback is only going to be used by
 Android 4.x, and this feature detection works without problems
 there.

Chapter 8. More SSE: The Rest of the Standard

The SSE standard contains a few other features that I have glossed
 over in this book, and this chapter will take a look at them. These other
 features of SSE have been ignored for a couple of reasons. First, I didn’t
 need them! By making the decision to always pass around one JSON object per
 line, and having the JSON object be self-descriptive, the
 event and multiline features were
 never needed. The second reason is that it would have made the fallbacks
 slower and more complicated. By being pragmatic and not trying to create a
 perfect polyfill of SSE, we could allow our fallbacks to use the protocol
 that best suited them. But it is good to know about them, and this chapter
 will introduce each feature, show when you might want to use it, and even
 give some hints as to how to implement it in our fallbacks.
Headers

Here is a simple script (found as log_headers.html in the book’s source
 code):
<html>
 <head>
 <title>Logging test</title>
 </head>
 <body>
 <script>
 var es = new EventSource("log_headers.php");
 </script>
 </body>
</html>
This goes to show just how small an SSE script can be. Of course, it
 does absolutely nothing on the frontend. Here is the corresponding backend
 script:
<?php
$SSE = (@$_SERVER["HTTP_ACCEPT"] == "text/event-stream");
if($SSE)
 header("Content-Type: text/event-stream");
else
 header("Content-Type: text/plain");
file_put_contents("tmp.log", print_r($_SERVER, true));
?>
This is also embarrassingly short. It simply writes everything it
 finds in the superglobal $_SERVER to a file called tmp.log. This includes the HTTP headers that
 the browser sent to the server, which is usually what we are interested
 in. tmp.log only shows the most
 recent request; it is overwritten each time. Try it out with each of your
 target browsers.
Note
If tmp.log does not get created when
 accessed through a web server, it is probably write permissions. On a
 Unix system, run touch tmp.log then chmod 666
 tmp.log. Then try again.

I wanted to show this one first, because you can take that
 file_put_contents("tmp.log",print_r($_SERVER,true)); line and
 put it at the top of any script that you want to troubleshoot, or just
 understand.
If you want to also see the contents of COOKIES, POST and all the
 other superglobals, it is trivial to add them, too. However, even better
 is to show the output of phpinfo(), an excerpt of which is
 shown in Figure 8-1. I will not show the script here
 because it is quite PHP-specific, but take a look at show_phpinfo.php if you are curious.
The show_phpinfo.php script
 grabs phpinfo() output (which is in HTML), does a little
 formatting, then outputs it as an SSE block. It wraps it in a JSON string
 to make sure the line breaks don’t cause problems. (The code also works
 with the XHR and long-poll fallbacks, and also includes some of the
 headers we look at in this chapter, to make it more generally useful.)
 Here is what the frontend looks like:
<html>
 <head>
 <title>PHPInfo Test</title>
 </head>
 <body>
 <div id="x">(loading...)</div>
 <script>
 var es = new EventSource("show_phpinfo.php");
 es.addEventListener("message", function(e){
 var s = JSON.parse(e.data);
 document.getElementById("x").innerHTML = s;
 },false);
 </script>
 </body>
</html>
[image: Sample output of show_phpinfo.html]

Figure 8-1. Sample output of show_phpinfo.html

If you see “(loading…)” and nothing else, you are likely getting a
 403 Forbidden for the access to show_phpinfo.php. See the following warning
 block for why.
Warning
Do not put this particular script on a production server.
 phpinfo() goes into great detail about your system, and
 some of it could be useful to a hacker.
Because people might upload all the book’s source code to their
 web server before they read this chapter, an .htaccess file is included that
 specifically blocks access to show_phpinfo.php, using this block:
<Files "show_phpinfo.php">
 deny from all
</Files>
On a system where you are confident that the outside
 world will not have access, you can go ahead and delete
 that block from the .htaccess
 file.
Note that .htaccess files will only work if
 your Apache configuration is set to allow their use. Sometimes they
 are disabled for reasons of
 either performance or central control. Changing
 AllowOverride to All or at least
 AllowOverride AuthConfig Limit in your Apache configuration files will do
 the job. See https://httpd.apache.org/docs/2.0/mod/core.html#allowoverride
 for more information.
See Authorization (with Apache) in Chapter 9 for more on using the .htaccess file to control access to SSE
 resources.

Most other languages supply the same access to the headers.
 Here is how to do it with a standalone Node.js server:
var http = require("http");

http.createServer(function(request,response){
 console.log(request.method+" "+request.url);
 console.log(request.headers);

 if(request.url!="/sse"){
 response.end("<html>"+
 "<head><title>Logging test</title></head>"+
 "<body><script>"+
 "var es = new EventSource('/sse');"+
 "</script></body></html>\n");
 return;
 }

 response.writeHead(200,
 { "Content-Type": "text/plain" });
 response.end();
 }).listen(1234);
Start this with node log_headers.node.js, and it will
 listen on port 1234 on all IP addresses of your server. The key line is
 console.log(request.headers);. It outputs to the console, but
 you could easily change this to log to a file, as the PHP example did. The
 rest of the script is scaffolding to send back an HTML file that can call
 the server again using SSE. Also of interest might be the
 console.log(request.method+" "+request.url); line, to show
 which file was requested.

Event

As we have seen throughout the book, the server prefixes the data to send
 with data:. Then on the client side this is received by
 creating a handler for the message event:
es.addEventListener("message", function(e){
 var d = JSON.parse(e.data);
 document.getElementById(d.symbol).innerHTML = d.bid;
 },false);
It turns out that the message is the default, and you
 can have the server label each line of data in such a way that a different
 function can be used to take care of it on the frontend.
The labeling is done with an event: line preceding the
 data. Then on the client side it is handled by specifying a handler for
 just that kind of event. An example will make this clear. Going back to
 the FX application, the data could have been sent like this:
event:AUD/GBP
data:{"timestamp":"2014-02-28 06:49:55.081","bid":"1.47219","ask":"1.47239"}

event:USD/JPY
data:{"timestamp":"2014-02-28 06:49:56.222","bid":"94.956","ask":"94.966"}

event:EUR/USD
data:{"timestamp":"2014-02-28 06:49:56.790","bid":"1.30931","ask":"1.30941"}

event:EUR/USD
data:{"timestamp":"2014-02-28 06:49:57.002","bid":"1.30983","ask":"1.30993"}

event:EUR/USD
data:{"timestamp":"2014-02-28 06:49:57.450","bid":"1.30972","ask":"1.30982"}

event:AUD/GBP
data:{"timestamp":"2014-02-28 06:49:57.987","bid":"1.47235","ask":"1.47255"}

event:AUD/GBP
data:{"timestamp":"2014-02-28 06:49:58.345","bid":"1.47129","ask":"1.47149"}
Compare this with the first code block in Fine-Grained Timestamps. If you are very bandwidth-sensitive,
 using event: like this appears to save 6 bytes per message.
 However, by changing “symbol” to “s” in our original JSON, it would be a
 mere 1-byte difference, and if we were using CSV instead of JSON, then
 using event: would be 7 bytes more expensive.
Note
The event name can be made up of any Unicode characters, except
 carriage return and line feed. If you need multiline event names,
 first find a mirror and ask yourself: “Really?”
 If the answer is still yes, then work out some escaping mechanism—for
 instance, JSON-encoding event names and then using the encoded version
 in your call to addEventListener.

On the client side, instead of the “message” handler shown earlier,
 I instead create a handler for each possible “event.” In this case that means
 one event handler for each FX symbol:
es.addEventListener("EUR/USD", function(e){
 var d = JSON.parse(e.data);
 document.getElementById("EUR/USD").innerHTML = d.bid;
 },false);

es.addEventListener("USD/JPY", function(e){
 var d = JSON.parse(e.data);
 document.getElementById("USD/JPY").innerHTML = d.bid;
 },false);

es.addEventListener("AUD/GBP", function(e){
 var d = JSON.parse(e.data);
 document.getElementById("AUD/GBP").innerHTML = d.bid;
 },false);
I am sure that made you cringe, throw up your hands, and scream,
 “Yuck!” Yes. When the data being multiplexed (FX symbols in this case) is
 the same format, and processed in the same
 way, using event: for each data stream is
 going to cost you more than it gains. It was a bad example…I’m
 sorry.
A better example? Well, one where the data for each “event” is going
 to be processed in a different way. How about a chat application? It is
 reasonable to imagine this kind of data stream being sent:
event:enter
data:{id:17653,name:"Sweet Suzy"}

event:message
data:{msg:"Hello everyone!",from:17563}

event:exit
data:1465
The chat messages are sent as JSON. The JSON has a msg
 field for the actual chat message and a from field with the
 ID of the user who sent it. When members enter the chat room they are
 announced with an enter event, which gives the user ID,
 and information about them (here just their name). When members leave the
 chat room, an exit message is sent and the data is just
 their numeric ID, not a JSON object:
es.addEventListener("enter",
 function(e){ addMember(JSON.parse(e.data)); },false);
es.addEventListener("exit",
 function(e){ removeMember(e.data); },false);
es.addEventListener("message",
 function(e){ addMessage(JSON.parse(e.data)); },false);
We use the following functions to do the actual work:
function addMember(d){
 members[d.id] = d;
 var img = document.createElement("img");
 img.id = "member_img_" + d.id;
 img.alt = d.name;
 img.src = "/img/members/" + d.id + ".png";
 document.getElementById("memberimg").appendChild(img);
 }

function removeMember(id){
 var img = document.getElementById("member_img_" + id);
 img.parentNode.removeChild(img);
 delete members[id];
 }

function addMessage(d){
 var msg = document.createElement("div");
 msg.innerHTML = d.msg;
 document.getElementById("messages").appendChild(msg);
 }
Note
addMessage() could use d.from. I’ve also
 skipped over error checking: be careful with this code in production
 because it allows a JavaScript injection attack (though the server
 should be taking care of stripping out bad tags from the chat
 messages).

How can the fallbacks be made to work with event:
 lines? One way is to add some code to our earlier
 processNonSSE(msg) (see Dealing with Data). We will also need a global to
 remember which event is being processed currently:
var currentEvent = null;
...
function processNonSSE(msg){
var lines = msg.split(/\n/);
for(var ix in lines){
 var s = lines[ix];
 if(s.length == 0)continue;
 if(s.indexOf("event:") == 0){
 currentEvent = s.substring(6);
 }
 else{
 if(currentEvent == "exit"){
 removeMember(s);
 }
 else{
 if(s[0] != "{"){
 s = s.substring(s.indexOf("{"));
 if(s.length == 0)continue;
 }
 var d = JSON.parse(s);
 if(currentEvent == "enter")
 addMember(d);
 else if(currentEvent == "message")
 addMessage(d);
 //else unknown event
 }
 }
 }
}
Notice that some of the complexity here is because of not using a
 JSON object for all events. This is one reason I suggest just settling on
 using a JSON object for all data; it makes dealing with the fallbacks
 easier.
That is one way. The other way is to add an event field
 to the JSON object (again, this requires changing the “exit” event to use
 a JSON object). This resembles the way we used the id:
 row for SSE clients, but also repeated the “id” information in the JSON
 object (see Sending Last-Event-ID).
But if we are going to do that, why bother with using the event row
 at all? We end up with all messages coming through
 processOneLine(s) and the code looks a bit like this:
switch(d){
 case "enter":addMember(d);break;
 case "exit":removeMember(d.id);break;
 case "message":addMessage(d);break;
 }
So, to sum up, the event: feature of SSE is one
 way to organize different actions, but it offers no advantages over doing
 it yourself with an extra JSON or CSV field, and doing it that way makes
 dealing with other browsers easier and more efficient. So I suggest you
 only use event: when both these conditions are
 true:
	All your clients have native SSE support.

	You want to use a mix of different data types for your event
 types, including some simple data types such as integer, float, or
 string (and therefore including your own event field is not
 possible).

Multiline Data

Throughout the book I have advocated using JSON objects for message passing. One
 of the reasons for that it is gave us one exactly line per message. Why is
 that a benefit? Because it makes it very easy to do the parsing in the
 fallbacks used by the older browsers.
Did you notice how in the FX application the backend only sent an
 extra carriage return after the data when in SSE mode? When using
 long-poll, XHR, or iframe techniques, it skipped this because we didn’t
 need it: one line of JSON is always a complete message. (Incidentally, we
 saved one byte, or actually six bytes, because the fallbacks did not
 prefix the data lines with data: either. Saving 6 bytes
 was not the reason this was done. Saving some
 client-side processing was.)
So why does SSE require that extra blank line between messages? It
 is there because the SSE standard allows for a message to be split across
 multiple lines. For example, the server can send this data:
data:Roses are red
data:Violets are blue
data:No need to escape
data:When you do as I do
 <-- Extra LF
For the sake of understanding how the client will deal with it,
 let’s pretend that the server flushes the data after each line, then goes
 to sleep for a second or two. The client will receive “Roses are red.” No
 blank line has been received, so it buffers it up and waits. Two seconds
 later it gets a second line, “Violets are blue,” so it buffers this:
 “Roses are red\nViolets are blue.” Notice that it is just buffering—it is
 not telling the client that any data has arrived yet. After the fourth
 line it has buffered up “Roses are red\nViolets are blue\nNo need to
 escape\nWhen you do as I do.” Finally, the client gets a blank line. It
 calls the JavaScript event handler passing the single long string built up
 in its buffer.
Note
The string passed to the event handler does not have the final
 LF.
(The standard says clients should go to the trouble of adding an
 LF after each line when it buffers it up, only to then remove the
 final one at the end. Standards do things like that, and often find
 themselves alone at parties, with no one to talk to but the potted
 plant in the corner.)
What if you really wanted a blank line at the end of your
 message? Send a blank data: line. For instance, the
 following sequence will pass the string “111\n\n333\n\n” to the event
 handler:
data:111
data:
data:333
data:
data:

Why does SSE let us do this? It does it so that there is no need
 to escape carriage returns. In contrast when we use JSON, the above poem
 looks like this:
data:"Roses are red\nViolets are blue\nNo need to escape\nWhen you do as I do"
Unlike in the buffer example earlier in this section,
 \n refers to two bytes, first a \,
 then an n. Including the data: and
 the following blank line, the JSON string is 80 bytes, whereas the
 non-JSON version is 91 bytes. All those data: strings
 added up to more than the extra byte for the \, and the
 extra two bytes for the quotes.
Note
How do we implement handling multiple lines for a single message
 in the fallbacks? Basically you would have to implement the SSE
 buffering algorithm described earlier in this section, in JavaScript.
 And the server has to send that extra blank line for all clients, not
 just the SSE clients. This is not that hard, and you wouldn’t need to
 use the data: prefix, so the byte difference would
 not be against you. But when this approach is compared to the ease of
 always using one line of JSON, I feel you would need a jolly good
 reason to want to go down this path.

In summary, use the multiline feature of SSE when all these
 conditions are true:
	All your clients have native SSE support.

	You have naturally multiline data to send.

	You have a good reason not to use JSON.

Whitespace in Messages

This is a quick, short section. Throughout the book I have used
 data:XXX, event:XXX, etc. The standard also
 allows you to write data: XXX, event: XXX, etc.
 In other words, you can have a space after the colon. I am an easygoing
 person, happy to let people choose their own way of doing things, but I’m
 going to take a stand here: never do this. It just
 wastes a byte, and has no advantage whatsoever.
But this feature creates a potential problem: if you are sending raw
 strings as your data, if you ever need to have a leading space in your
 data, it will get sucked away. What to do? The simple solution is to use
 JSON. Gosh, I do keep harping on about that, don’t I! The downside is
 minor: two extra bytes per string (for the quotes), as well as an extra
 escape slash character if your string has any special characters. But that
 is still a downside; is there another solution? Yes. If you want to send
 raw strings, and there is the chance of an important leading space, then
 prefix all strings with a space. It wastes one byte per line. If that
 waste still bothers you, only do this when your data has a leading
 space…but that is a lot of fuss for the sake of a byte.

Headers Again

In the FX application, I passed in xhr=1 or
 longpoll=1 in the URL so that the server could identify
 the fallback. We then identified SSE as the absence of either of those.
 There is another way. But before we look at it, here is a reminder of how
 those are used:
	longpoll
	Send a text/plain content-type header;
 exit after sending a message.

	xhr
	Send a text/plain content-type
 header.

	sse
	Send a text/event-stream content-type
 header.
Send a data: prefix, an extra carriage
 return, and id: lines.

The alternative way is that SSE clients will send an
 Accept: text/event-stream header, which should uniquely
 identify them as supporting SSE natively. So the FX application had these
 lines:
$GLOBALS["is_longpoll"] = array_key_exists("longpoll", $_POST)
 || array_key_exists("longpoll", $_GET);
$GLOBALS["is_xhr"] = array_key_exists("xhr", $_POST)
 || array_key_exists("xhr", $_GET);
$GLOBALS["is_sse"]=!($GLOBALS["is_longpoll"] || $GLOBALS["is_xhr"]);

...

if($GLOBALS["is_sse"])header("Content-Type: text/event-stream");
else header("Content-Type: text/plain");
By instead using that header, there is no longer a need to send
 xhr=1; there is still a need to send longpoll=1
 though, so the difference between that and XHR/iframe can be detected. The
 code ends up looking something like this:
$GLOBALS["is_sse"] = @$_SERVER["HTTP_ACCEPT"] == "text/event-stream";
$GLOBALS["is_longpoll"] = array_key_exists("longpoll", $_POST)
 || array_key_exists("longpoll", $_GET);
$GLOBALS["is_xhr"]=!($GLOBALS["is_longpoll"] || $GLOBALS["is_sse"]);

...

if($GLOBALS["is_sse"])header("Content-Type: text/event-stream");
else header("Content-Type: text/plain");
You have perhaps spotted why I didn’t do it this way: it is the same
 amount of complexity, with no advantages. Using the explicit
 xhr or longpoll has a couple of small
 advantages. First it appears in the server logs, whereas HTTP headers
 usually do not. That might help troubleshooting. Second, there is the risk
 of a buggy browser forgetting to send the header, or missing out the
 hyphen, etc. Sending a URL parameter is fairly riskless.

So Is That Everything?

In this chapter we have looked at the event:
 feature of SSE as well as how it supports sending messages with multiple
 lines, plus how leading spaces can cause problems. We did not use any of
 these features in the FX application, because by using JSON they become
 unnecessary.
To answer the “So Is That Everything?” question: no, it is still not
 everything the SSE standard mentions. We still have CORS to talk about.
 This, along with authentication, will be covered in the next
 chapter.

Chapter 9. Authorization: Who’s That Knocking at My
 Door?

In the previous chapters all our data push examples have been open to
 everyone. In this chapter I will show how we can limit access, whether by
 IP, cookie, or password. The good news is that it is as straightforward as
 protecting any other resource on your server.
But that is not the only topic of this chapter. There has been another
 restriction underlying all the examples in the earlier chapters, and the
 time has come to deal with that one, too. The restriction is that both your
 HTML file (that makes the SSE request and receives the data) and your
 server-side script (that sends the data) have had to reside on the same
 server. Well, server is too imprecise: they have to be
 in the same origin. Later in this chapter, we will look
 at the definition of an origin and then how to get around this
 restriction.
These two topics are closely related, but notice that they are
 orthogonal: your data push can fail because either you lack the
 authorization (IP, cookie, password) or because you come from a disallowed
 origin, or both. For data push to be successful, the client has to satisfy
 both.
If you are familiar with web applications and want the distilled
 version of this chapter, authentication and CORS mostly work just like they
 do for Ajax; but watch out for browser support and bugs.
This chapter will finish by taking the FX demo application from the
 earlier chapters and showing how to add authentication and CORS support to
 it.
Cookies

Cookies can be sent to an SSE script. The browser treats an SSE connection
 just the same as any other HTTP request when it comes to cookies, and you
 don’t need to do anything. Here is a simple test frontend:
<html>
<head>
<title>Cookie logging test</title>
<script>
document.cookie="ssetest=123; path=/";
document.cookie="another-one=123; path=/";
</script>
</head>
<body>
<script>
var es = new EventSource('log_headers.php');
</script>
</body>
</html>
Of course those cookies could have been sent from another page on
 your website, not made in the JavaScript. This example reuses the logging
 script we looked at in Headers.
This example also works fine with all the fallbacks:
 XMLHttpRequests and iframe requests are treated just
 like any other HTTP request!
What about in the other direction: can the SSE server script send a
 cookie back? The answer is yes, as you can test with this pair of scripts.
 The frontend is trivial, no different from basic_sse.html, which we saw way back in Chapter 2:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>SSE: access count using cookies</title>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var es = new EventSource("sse_sending_cookies.php");
 es.addEventListener("message", function(e){
 document.getElementById("x").innerHTML += "\n" + e.data;
 },false);
 </script>
 </body>
</html>
That file is found as sse_sending_cookies.html in the book’s code,
 and it is connecting to sse_sending_cookies.php, which is
 shown next. The backend code looks like basic_sse.php, but near the top it
 first looks for a cookie called "accessCount". (If not
 found, the @ suppresses the error, and the (int)
 cast will turn it into a zero.) It increments and sends back the new
 value. The new value is also shown in the output:
<?php
header("Content-Type: text/event-stream");

$accessCount = (int)@$_COOKIE["accessCount"] + 1;
header("Set-Cookie: accessCount=".$accessCount);

while(true){
 echo "data:".$accessCount.":".date("Y-m-d H:i:s")."\n\n";
 @ob_flush();@flush();
 sleep(1);
 }
Now when you run the script you first see:
Initializing...
1:2014-02-28 14:17:33
1:2014-02-28 14:17:34
1:2014-02-28 14:17:35
...
Then if you press reload in your browser, it will instead
 show:
Initializing...
2:2014-02-28 14:17:40
2:2014-02-28 14:17:41
2:2014-02-28 14:17:42
...
Such fun!

Authorization (with Apache)

You can IP-restrict or password-protect any SSE script the same way you can protect
 any other URL. In the .htaccess file that
 comes with the book’s source code, I have this block:
<Files "log_headers_ip_restrict.php">
 order deny,allow
 deny from all
 allow from 127.0.0.1
</Files>
It says that only browsers from localhost (127.0.0.1) are allowed
 access. Everyone else will be given a 403 error. Use log_headers.ip_restrict.html to test it: it
 just tries to connect, nothing else. (By the way, log_headers_ip_restrict.php is an exact copy of
 log_headers.php, which we created in
 Chapter 8; the reason for duplicating it here is solely
 so we can apply these IP address restrictions on just that one
 file.)
If you are browsing from 127.0.0.1, you will get an entry in tmp.log. If you are browsing from
 anywhere else, there will be no entry in tmp.log
 (Apache would not even have started the PHP script). Browsers report the
 access denial in different ways. In the Firefox JavaScript console you
 will see something like “NetworkError: 403 Forbidden -
 http://example.com/log_headers_ip_restrict.php.” In Chrome, go to the
 Network tab of the developer tools to see a canceled request.
As an aside, here is an alternative block that allows all the
 private IPv4 and IPv6 networks. I often find this one more useful:
<Files "log_headers_ip_restrict.php">
 order deny,allow
 deny from all
 allow from 127.0.0.1
 allow from 172.16.0.0/12
 allow from 10.0.0.0/8
 allow from 192.168.0.0/16
 allow from fc00::/7
</Files>
That was restricting access by something-you-are, an IP address. How
 about restricting access by something-you-know, i.e., with a username and
 password? I also have this block in the .htaccess file:
AuthUserFile /etc/apache2/sse_book_htpasswd
AuthType Basic
AuthName SSEBook
<Files "log_headers_basic_auth.php">
 require valid-user
</Files>
Note
Actually in .htaccess you
 will find something like:
<Files ~ "^(log_headers_basic_auth[.]php|auth[.]basic_by_apache[.]php)$">
because it is also used by the script introduced in a later
 section. The tilde means it is regex, but in this case the regex is
 merely a list of alternatives, separated by vertical bars. The dots in
 filenames are matched exactly (rather than the regex meaning of a dot)
 by turning them into character classes (the square brackets).

I then have these contents in the /etc/apache2/sse_book_htpasswd file:
oreilly:AhsbB/t5vHsxA
That is a basic auth password of “test” for the username
 “oreilly.”
Warning
Use the htpasswd program to change to a different password. The password file can be
 anywhere on your disk—it does not have to be under the Apache
 configuration directory. Just change AuthUserFile
 to match.

Now when you browse to log_headers.basic_auth.html, this sequence
 happens:
	log_headers.basic_auth.html loads,
 because it is unprotected.

	The JavaScript runs, and the EventSource object
 is created.

	The browser connects to log_headers_basic_auth.php, and gets told
 by Apache that a username and password is needed.

	The browser shows a dialog asking the user for that
 information.

	The browser connects again, this time
 sending the username and password.

	Apache verifies it and runs the PHP script.

	The PHP script starts streaming data to the browser. (Though
 in this case, it logs headers then does not stream anything at
 all!)

Notice how the authentication is completely handled by
 Apache: the PHP script does not need to do anything, and knows it will not
 be started unless authentication has completed.
If your PHP script wants to double-check that Apache has been
 configured correctly and is asking for authentication, it should check
 that REMOTE_USER got set. log_headers_basic_auth.php has this line at the
 very top:
if(!@$_SERVER["REMOTE_USER"])exit;
As subtle as a big, bad bouncer. Ain’t got a pass? You can’t
 come in.
Note
In PHP you can get the username of the person connecting with
 either $_SERVER["REMOTE_USER"] or
 $_SERVER["PHP_AUTH_USER"]. $_SERVER["PHP_AUTH_PW"]
 is their password (in clear text). However, if PHP runs in safe
 mode, the PHP_AUTH_* values are not available.

HTTP POST with SSE

If you bought this book just to learn how to POST variables to an SSE backend,
 and you’ve turned straight to this section, I’d like you to take a deep
 breath, and make sure you are sitting down. You see, I have some bad news.
 How to break it to you gently…you remember as a child when you wanted to
 fly like Superman and everyone told you it couldn’t be done, you’d never
 manage it, and they turned out to be right? Well, it is happening
 again.
The SSE standard has no way to allow you to POST data to the server.
 This is a very annoying oversight, and might get rectified at some point.
 After all, the XMLHttpRequest object allows us to send POST data. (Ironically, that means we can
 easily send POST data for the fallback solutions introduced in Chapters
 6 and 7.)
The reason I cover this in a chapter on authentication is that it is
 particularly annoying when it comes to doing a custom login. We do not
 want to send the username and password as GET data because it will be
 visible in the URL, will end up in server log files, and so on.
The SSE standard also does not let us specify HTTP headers, so using
 a custom header is out too. What to do?
Luckily there is one way to send non-URL data to an SSE process, and
 we looked at it at the start of this chapter: cookies! So, in your
 JavaScript, just before the call to new EventSource(), set a
 cookie something like this:
document.cookie = "login=oreilly,test;path=/";
(I know you already realize you are going to be doing something more
 dynamic than that, not hardcoding the username and password!) The password
 is in cleartext in your cookie. I strongly recommend that you only use
 this technique when also using SSL.
Then, over on the server side, here is how to handle the cookie data
 in PHP:
<?php
if (!defined("PASSWORD_DEFAULT")) { //For 5.4.x and earlier
 function password_verify($password, $hash) {
 return crypt($password,$hash) === $hash;
 }
} //End of if (!defined("PASSWORD_DEFAULT"))

$SSE = (@$_SERVER["HTTP_ACCEPT"] == "text/event-stream");
if($SSE)header("Content-Type: text/event-stream");
else header("Content-Type: text/plain");

if(!array_key_exists("login", $_COOKIE)){
 echo "data: The login cookie is missing. Exiting.\n\n";
 exit;
 }
list($user, $pw) = explode(",", $_COOKIE["login"]);

$fromDB = '$2a$10$4LLeBta770Y0Z7795j.8'.
 'He/ZCQonnvImXIX0egalzE1MuWiEa6PQa';

if(!password_verify($pw, $fromDB)){
 echo "data: The login cookie is bad. Exiting.\n\n";
 exit;
 }

while(true){
 echo "data:".date("Y-m-d H:i:s")."\n\n";
 @ob_flush();@flush();
 sleep(1);
 }
(That is the full code for auth.custom.php, which we will be using in the
 next section.)
The SSE header is done first, so that login error messages can be
 sent just like any other data. Then explode() turns a CSV
 string (our cookie) into an array, and list($user,$pw) turns
 that array into two variables. $fromDB is a hardcoded string
 here, but, as the name suggests, this would normally come from an SQL
 query to get the hashed password. Then the password is hashed and
 validated using password_verify() and if it does not match
 what was found in the database, access is denied.
Warning
The hardcoded password shown in the preceding code listing was
 generated with password_hash(), which, along with
 password_verify(), was added in PHP 5.5 to encourage best practices for password
 security. They are easy to write in earlier versions of PHP, and the
 code for that is shown in Passwords.
 (So the preceding listing can be used out of the box in earlier
 versions; password_verify() has been defined
 inline.)

By the way, that login cookie will be sent to all pages on our site,
 because path was specified as /, which is likely to be
 undesirable. If so, in your production system, make the SSE server URL
 look like a path (e.g., use Apache’s mod_rewrite) and
 then set the cookie path to be that.
Also, we set the document cookie. That means it
 is tied to the domain name we loaded the HTML from. When we look at CORS
 later in this chapter, this will mean that if we have to connect to a
 different backend, we cannot send a cookie to that backend. So this
 “cookie-instead-of-POST” hack can only be used when the HTML file and the
 SSE backend are on the same server.

Multiple Authentication Choices

The following example file, auth_test.html, offers the user three ways to log in to the site. The first is by
 giving the values in an HTML form. (I have them filled in already to ease
 testing—don’t do this in production!) This puts them in a cookie and
 submits them to the auth.custom.php
 script that was shown in the previous section. The other two buttons will
 use HTTP basic authorization. The first has Apache do the authorization,
 and the second has PHP do it. We have already looked at how Apache
 authorization works, controlled by the .htaccess file.
The way to do basic authorization directly in PHP looks a bit like
 the cookie example shown in the previous section, but we get the login
 details from PHP_AUTH_USER and
 PHP_AUTH_PW. Here is the extract from auth.basic_by_php.php that handles the
 authentication:
$user = @$_SERVER["PHP_AUTH_USER"];
$pw = @$_SERVER["PHP_AUTH_PW"];

$fromDB = '$2a$10$4LLeBta770Y0Z7795j.8'.
 'He/ZCQonnvImXIX0egalzE1MuWiEa6PQa';
if(!password_verify($pw,$fromDB)){
 header('WWW-Authenticate: Basic realm="SSE Book"');
 header("HTTP/1.0 401 Unauthorized");
 echo "Please authenticate.\n";
 exit;
 }
When authentication fails, those HTTP headers are sent back to the
 browser. These are what cause the browser to prompt the user with a login
 dialog box.
Here is the full auth_test.html
 code. It is an interesting study because it also shows how to create a
 delayed EventSource connection, only on demand. In contrast,
 practically all our previous examples have done the connection
 automatically when first loaded.
<!doctype html>
<html>
 <head>
 <title>SSE: Basic/Custom Auth Test</title>
 <meta charset="UTF-8">
 <script>
 var es = null;

 function formSubmit(form){
 document.cookie = "login="
 + form.username.value
 + "," + form.password.value
 + "; path=/";
 startSSE("auth.custom.php");
 }

 function authByApache(){
 startSSE("auth.basic_by_apache.php");
 }

 function authByPHP(){
 startSSE("auth.basic_by_php.php");
 }

 function startSSE(url){
 document.getElementById("x").innerHTML = "";
 if(es){
 document.getElementById("x").innerHTML
 += "Closing connection.\n";
 es.close();
 }
 document.getElementById("x").innerHTML
 += "Connecting to " + url +"\n";
 es = new EventSource(url);
 es.addEventListener("message", function(e){
 document.getElementById("x").innerHTML += "\n" + e.data;
 },false);
 }
 </script>
 </head>
 <body>
 <div style="float:right">
 <form action="" onSubmit="formSubmit(this);return false">
 Username: <input type="text" name="username" id="username" value="oreilly" />

 Password: <input type="password" name="password" value="test" />

 <input type="submit" value="Submit these credentials to auth.custom.php"/>
 </form>

 <button onClick="authByApache()">Use auth.basic_by_apache.php</button>

 <button onClick="authByPHP()">Use auth.basic_by_php.php</button>
 </div>
 <pre id="x">Waiting...</pre>
 </body>
</html>

SSL and CORS (Connecting to Other Servers)

First the good news. You can use SSE (and all the fallbacks discussed in this
 book) on either an HTTP server or an HTTPS server. When the HTML file is
 downloaded from an HTTP server, it wants to connect to get data from an
 HTTP server. When downloaded from an HTTPS server, it wants to get data
 from an HTTPS server.[33]
If you try to connect to an HTTPS server from a page downloaded from
 HTTP, or vice versa, you get the “The connection to … was interrupted
 while the page was loading.” error in Firefox. Chrome is barely any better: “Uncaught Error:
 SecurityError: DOM Exception 18.” Other browsers will tell you something
 equally obscure. In fact, they are all complaining about a CORS failure.
 Read on.
Note
If you intend to follow along in the next few sections with
 Chrome or Safari, make sure you have at least Chromium 26 or
 Safari 7, because CORS support was missing or buggy until then.
 Firefox support has been fine since much earlier. See Chrome and Safari and CORS.

CORS stands for Cross-Origin Resource Sharing. I wonder if they
 started with a catchy abbreviation then tried to find some words to fit.
 Anyway, CORS is the solution for the Same-Origin Policy. The Same-Origin
 Policy is a security feature: if you download an HTML file from a
 server, your browser will only let you connect back to that exact same
 server. (This is not specific to SSE; it affects your Ajax connections and
 web font requests, too.)
That is a shame, isn’t it? What if AcmeFeeds wants to sell a weather
 data feed, hosted at weather.example.com, and wants
 its clients to be able to put a little JavaScript widget on their own
 websites that will connect to weather.example.com?
 The Same-Origin Policy says this is not allowed.
Here is an alternative viewpoint. What if AcmeWeather has a weather
 data feed hosted at weather.example.com, and it runs
 a website, also at weather.example.com, that uses
 advertising to pay for the costs of maintaining the data feed? AcmeWeather
 doesn’t want some other sneaky website stealing just its data feed, for
 which it will get no advertising revenue.
The browser’s default state is to protect AcmeWeather: browsers do
 not allow someone to consume data from another website. And so CORS was
 invented to allow AcmeFeeds to override that default and tell the world
 that it is OK to take its data.
Basically, CORS is the way for a server to say it is OK to relax the
 Same-Origin Policy. If you have used CORS with the
 XMLHttpRequest object (i.e., with Ajax), you will be happy to know that the
 EventSource object works in basically the same
 way.
So, what exactly is an origin? Two resources are in the same origin
 if:
	Their hostnames match (e.g., “example.com” and
 “somethingelse.com” are different, “www1.example.com” and
 “www2.example.com” are different, “10.1.2.3” and “example.com” are
 different even if “example.com” resolves to 10.1.2.3).

	Their schemes match (e.g., both http://
 or both https://).

	Their ports match (e.g., “http://example.com:80” and
 “http://example.com:8080” are different origins, but
 “http://example.com” and “http://example.com:80” are the same
 origin).

See http://tools.ietf.org/html/rfc6454#section-4
 if you need a more precise definition. See http://www.w3.org/TR/cors/ for
 all the gory details on CORS.
CORS is implemented by the SSE server-side script sending back extra
 headers to say what it allows. That is what we will look at next.

Allow-Origin

To try this out, add this line near the top of your server script:
header("Access-Control-Allow-Origin: *");
This line says: “Anyone browsing from anywhere is allowed to receive
 data from this server script.” It has been added to fx_server.cors.php, which is otherwise just a
 copy of the FX application demo server script, as of the end of Chapter 7. See the following sidebar for how to test that this
 header is having the desired effect.
Testing CORS
Testing requires a bit more setup than in previous examples. You
 need to serve the HTML from one origin and have it connect to an SSE
 server in another origin, meaning a different hostname and/or a
 different port and/or a different protocol. However, this does not need
 two machines, just a bit of web server configuration. If you don’t know
 how to do that, a web search should bring up plenty of tutorials for
 your OS and web server combination.
To allow us to test CORS, I have created fx_client.cors.html, which connects to
 fx_server.cors.php. However,
 fx_client.cors.html is one of the
 few listings in the book’s source code that might not be usable out of
 the box, depending on how you have set up your servers. Instead of this
 line:
var url = "fx_server.cors.php?";
you will find:
var url = window.location.href.replace(
 "fx_client.cors.html","fx_server.cors.php?");
It is making an absolute URL instead of a relative one. So if you
 were hosting this project at http://www.example.com/oreilly/sse/listings/fx_client.cors.html,
 it would set url to
 http://www.example.com/oreilly/sse/listings/fx_server.cors.php?.
Next we have:
if(url.indexOf("https") >= 0)
 url = url.replace("https://","http://");
else url = url.replace("http://","https://");
These lines swap between HTTP and HTTPS. To support this I set up
 Apache SSL, with a self-signed certificate, but on the same IP address
 and pointing to the same DocumentRoot. So when I browse to
 http://www.example.com/oreilly/sse/listings/fx_client.cors.html,
 it connects to https://www.example.com/oreilly/sse/listings/fx_server.cors.php?
 and when I browse to https://www.example.com/oreilly/sse/listings/fx_client.cors.html,
 it connects to http://www.example.com/oreilly/sse/listings/fx_server.cors.php?.
After that we have a way to test origins that are different in the
 hostname part:
url = url.replace("//www1.","//www.");
When I browse to www1.example.com it will
 instead connect to www.example.com. When I browse
 to www.example.com, or anything other than
 www1, it does nothing, and so will continue to
 connect to that same domain.
I configured Apache to handle all of the above by duplicating the
 www.example.com virtual host, in both HTTP and
 HTTPS, and calling it example1.com. So, when I
 browse to http://www1.example.com/oreilly/sse/listings/fx_client.cors.html
 it connects to https://www.example.com/oreilly/sse/listings/fx_server.cors.php?.
When testing, it is often easier to just add an another IP
 address, rather than add another hostname. Here is a way to convert an
 IP address in a URL:
url = url.replace(
 /([/][/]\d+[.]\d+[.]\d+)[.]51[/]/,
 "$1.50/");
Vicious regex. Simply put, it changes a final IP
 address component of “51” to “50,” so if I browse to http://10.0.0.51/oreilly/sse/listings/fx_client.cors.html
 it connects to https://10.0.0.50/oreilly/sse/listings/fx_server.cors.php?.
The final addition is to report the changes it made; this is just
 for troubleshooting purposes:
console.log("Our URL is "
 + window.location.href
 + "; connecting to " + url);
Now, to convince yourself it is actually working, first browse to
 fx_server.cors.html with both
 http:// and https:// on a
 couple of different domain names. It should work. Then edit fx_server.cors.php to comment out
 header("Access-Control-Allow-Origin: *"); and all those
 variations should stop working.

Fine Access Control

The * in header("Access-Control-Allow-Origin:
 *"); opens it up to every Tom, Dick, and Harry. Luckily, finer control
 is possible. So, for example, try changing it to this:
 header("Access-Control-Allow-Origin:
 http://www.example.com"); (the http:// prefix is
 required). Now when you browse to http://www.example.com/oreilly/sse/listings/fx_client.cors.html,
 it connects to https://www.example.com/oreilly/sse/listings/fx_server.cors.php?
 and it works. But, as we learned at the start of this chapter, browsing
 from any of these will fail:
	https://www.example.com/…/fx_client.cors.html

	http://www1.example.com/…/fx_client.cors.html

	http://www.example.com:88/…/fx_client.cors.html

	http://some.other.domain.com/…/fx_client.cors.html

Warning
Access-Control-Allow-Origin is not a substitute for
 proper authentication: a client can forge the Origin
 header. Also remember that you are reliant on the browser to implement
 CORS correctly.

CORS is not as flexible as you might want. You can use “*” for
 everything, or you can specify exactly one origin,
 i.e., exactly one combination of HTTP versus HTTPS, domain, and port. Two
 choices: one origin or every origin. For anything in between, you have to
 parse the Origin header in your script. Here is the
 most basic example, which is actually identical to using
 "Access-Control-Allow-Origin: *":[34]
header("Access-Control-Allow-Origin: ".@$_SERVER['HTTP_ORIGIN']);
(The @ sign means suppress errors, so if
 HTTP_ORIGIN is not set, it will quietly evaluate to the empty
 string; in this case that would mean CORS would then always cause the
 connection to be refused.)
Here is a more interesting example:
if(preg_match('|https?://www[1-6]\.example\.com$|',@$_SERVER["HTTP_ORIGIN"]))
 header("Access-Control-Allow-Origin: ".$_SERVER["HTTP_ORIGIN"]);
else header("Access-Control-Allow-Origin: http://www.example.com");
Starting from the final line, if the regex does not match, it says
 you have to be browsing from http://www.example.com. I talk about regexes in
 Comparing Two URLs, but this one is relatively
 simple: it says any of wwwN.example.com will match
 (where N is 1, 2, 3, 4, 5, or 6), and will be told it
 is OK to connect. I also explicitly allow both HTTP and HTTPS URLs (the
 question mark after “s” means the “s” is optional). Take note that
 https://www.example.com will fail to match because
 it is not any of www1 to www6;
 put a ? after the [1-6] to have that be
 optional, too.
Don’t you feel we could do a bit better than this? Your goal was to
 say only clients who downloaded our application HTML from
 www.example.com,
 www1.example.com, etc., are allowed to connect. No
 one else is. How about we write that goal more explicitly:
if(preg_match('|https?://www[1-6]?\.example\.com$|',@$_SERVER["HTTP_ORIGIN"]))
 header("Access-Control-Allow-Origin: ".$_SERVER["HTTP_ORIGIN"]);
else{
 header("HTTP/1.1 403 Forbidden");
 exit;
 }
I fiddled with the regex so it covers www.example.com (and therefore allows both HTTP
 and HTTPS for that subdomain) too. But when anyone else is trying to
 connect, it dies immediately. I would put this code near the top of the
 server script.

HEAD and OPTIONS

So far we have only considered that the browser might send GET or POST requests.
 It would be weird of them to send something else, such as PUT, when
 requesting a stream of new data. In PHP, at least, all request methods are
 treated identically. If a client sent a HEAD request our code would behave badly: it is not supposed
 to send any body, and in fact we would not just be sending content but
 would keep the connection open forever. One option is to return from a
 HEAD request, just before entering the main loop (i.e., after all headers
 have been sent). But another approach is to decide HEAD requests are
 silly, and not accept them. To do this, the following code can go at the
 very top of the script:
switch($_SERVER["REQUEST_METHOD"]){
 case "GET":case "POST":break;
 case "OPTIONS":break; //TODO
 default:
 header("HTTP/1.0 405 Method Not Allowed");
 header("Allow: GET,POST,OPTIONS");
 exit;
 }
 }
Note
This HTTP method checking is not really related to the topic of
 this chapter, which is authentication and CORS. It is being discussed
 now to prepare the way for handling OPTIONS (coming up next).
If you felt the need, then for the examples in earlier chapters,
 where only GET makes sense, you could do it more simply by putting this
 at the top of your script:
if($_SERVER['REQUEST_METHOD']!='GET')↵
{header("HTTP/1.0 405 Method Not Allowed");header("Allow: GET");exit;}

The Allow header is required when sending back a 405, and it specifies what
 headers are allowed. What is that reference to OPTIONS though?
The idea is that a browser can call your script with an OPTIONS
 method to get back information on what parts of the HTTP protocol are
 supported. In the context of CORS, this is called a preflight request, and is
 typically used to ask what information is allowed to be sent to the origin
 in question.
Note
If using Apache authentication, note that the OPTIONS request
 will be failed with a 401 (“Authorization required”), and never
 actually reach your script. The browser should then prompt the user to
 authenticate, but some browsers (e.g., Safari 5.1) do not.

Annoyingly, sending back a wildcard for the
 "Access-Control-Allow-Headers" response does not seem to work, so you have to waste
 bandwidth trying to guess every header a browser might want to send. Here
 is one way to implement it:
...
case "OPTIONS":
 header("Access-Control-Allow-Origin: *");
 header("Access-Control-Allow-Headers: Last-Event-ID,".
 " Origin, X-Requested-With, Content-Type, Accept,".
 " Authorization");
 exit;
To do the same thing in Node.js, the idea is similar. However, POST
 handling in Node.js is a bit complicated, so it uses two dedicated
 functions (not shown) to handle each of GET and POST, and the request
 handler is completely replaced by this switch function:
function(request,response){
 switch(request.method){
 case "GET":handleGET(request,response);break;
 case "POST":handlePOST(request,response);break;
 case "OPTIONS":
 response.writeHead(200,{
 "Access-Control-Allow-Origin: *",
 "Access-Control-Allow-Headers: Last-Event-ID," +
 " Origin, X-Requested-With, Content-Type, Accept," +
 " Authorization"
 });
 break;
 default:
 response.writeHead(405,{
 "Allow: GET,POST,OPTIONS"
 });
 break;
 }
 }

Chrome and Safari and CORS

Webkit-based browsers have/had some bugs that stop CORS from working correctly
 with native SSE. The CORS implementation of EventSource
 was broken/missing in Chrome 25 and earlier, and Safari 6 and earlier. As
 I type these words most people are now past Chrome 25, but quite a few
 people are still using Safari 6. If that was the bad news, the even worse
 news is that it is well-nigh impossible to use feature detection for
 this.
If CORS is an essential part of your system, the workaround is to
 force Chrome and Safari to use XHR instead of SSE. Sounds
 horrible, doesn’t it? However, it is not quite that bad, because
 bandwidth-wise and connection-wise, XHR is almost as good as SSE. There
 are really only two downsides to XHR compared to SSE:
	Writing the extra code for both SSE and XHR support: but we
 have already done that.

	Having to reconnect when memory gets too big. See Thanks for the Memories in Chapter 7.

The example at the end of this chapter uses browser version
 detection to tell older versions of Chrome and Safari to use XHR instead
 of native SSE. As it just does some regexes, it is not shown in this book,
 so if you are interested, take a look at function
 oldSafariChromeDetect() in fx_client.auth.html in the book’s source
 code.
Chrome has another problem, though it is one that will only come up
 during development and testing: self-signed SSL certificates get rejected. This happens with
 both XHR and SSE, and the --disable-web-security command-line
 flag does not help. So, it is not a problem specific to Chrome’s SSE
 implementation. In fact, this bug is not even specific to CORS—you cannot
 connect with XMLHttpRequest or
 EventSource to a self-signed HTTPS server,
 period.[35] You can work around it by adding your server certificate to
 the Trusted Root Certificates on your local machine. Or wait for the
 developers to fix it. Or, because self-signed certificates are normally
 just used when testing and developing, develop using Firefox and other
 browsers and only test with Chrome when it goes on your production
 server.
iOS7 works with CORS and native SSE, but when connecting to an SSE
 data source that requests authentication, there is no dialog prompt for
 the password. XHR has the same problem, so we cannot work around it. If
 you want to support iPhone/iPad, you will have to arrange for users to
 access a page on your target server directly, so that they can be prompted
 to give the username and password. The browser will then hold on to those
 credentials, and they will be sent when the SSE or Ajax connection is
 made. (The cookie approach to authentication does not have this
 issue.)

Constructors and Credentials

You must know by now that the EventSource constructor takes the URL
 parameter to connect to. It turns out that there is a second parameter,
 which takes an object containing options. At the current time there is
 just one possible option, withCredentials, which is Boolean
 and defaults to false.
Try setting it to true on any of the earlier FX
 application code. Change this line:
es = new EventSource(u);
to this line:
es = new EventSource(u, { withCredentials: true });
If you are connecting to the same server, it has no effect. But do
 the same change in our CORS version, and try to connect to a different
 protocol, host, or port. It breaks. In Firefox you get told “The
 connection was interrupted.”
We fix it by having the server-side script send these two headers
 instead of header("Access-Control-Allow-Origin:
 *");:
header("Access-Control-Allow-Origin: ".@$_SERVER["HTTP_ORIGIN"]);
header("Access-Control-Allow-Credentials: true");
The second of those headers says, “Yes, we are happy for you to send
 credentials.” But this header is not allowed to be used with "Access-Control-Allow-Origin: *".
 The browser thinks we are being a bit too promiscuous. So, do you remember
 that line we said earlier that was equivalent to
 "Access-Control-Allow-Origin: *"? That is perfect for here. It
 does exactly the same thing, but makes the browser go, “Ooooh, this server
 has obviously listened to the lecture on safe intercourse, so let’s
 believe it when it also says it wants to allow credentials.”
Get up and do a happy dance, because with those two lines the client
 can now add the withCredentials:true option, and everything
 works again. But just what is it we’ve allowed to happen?!

withCredentials

Say you get your HTML from http://example.com/index.html, and it tries to
 make an SSE connection to http://www1.example.com/sse.php. If you have
 made it this far in this chapter, you must know that will fail due to the
 Same-Origin Policy. And you know that by having the server set a
 "Access-Control-Allow-Origin:" that is either
 * or your client’s origin, the Same-Origin Policy will
 be overridden, and the connection will work.
You also know, if you’ve been following along, that HTTP
 authentication works fine with SSE.
The problem comes when we try to combine these two things. By
 default, when you access another origin it won’t send along the HTTP
 headers needed for authentication. If the SSE server script (or Apache)
 sends back a 401 (which would normally trigger showing the user the dialog
 to input his name and password), it will just be treated as an
 error.
Note
Earlier we used cookies to implement a custom login system, in
 lieu of POST not being supported by EventSource.
 withCredentials does also mean cookies can be sent, but
 it is no use to us here because we can only set a cookie on
 document, which means we are setting it on
 our origin, and cookies registered for one
 IP address or hostname cannot be sent to a different IP address or
 hostname.
What does that mean? It means we cannot use native SSE with a
 custom login system if we need to connect to a different origin.
 Simply Not Possible.[36]
The solution? Hope that a future version of the SSE standard
 will allow POST data. The hack? In the example you will find at the
 end of this chapter, we detect when one is trying to do custom
 authentication to a different origin, and force the connection to fall
 back to use XHR instead of SSE. Or use basic authentication. Or avoid
 using different origins. Or use out-of-bound authentication, so a
 cookie for the SSE server is received before trying to open the SSE
 connection.

So, to get around this the client needs to pass {
 withCredentials: true } as the second parameter to the
 EventSource constructor, as shown in the previous section,
 and the server needs to send back the
 "Access-Control-Allow-Credentials" header, set to true, as well as set the
 "Access-Control-Allow-Origin" header to whatever origin
 the client specified. Once you do that, HTTP authentication (and
 cookies[37]) work with CORS.
Well, they work in a modern browser. And XHR
 works in exactly the same way, so they work with our fallbacks. Well, kind
 of…see the next section.
Warning
A reminder, once again, that none of this is
 real security. It all relies on the client
 obeying the rules. With a few lines of code in your scripting language
 of choice, or a curl one-liner, you can send auth
 headers, cookies, GET data, POST data, and even a picture of Her
 Majesty Queen Elizabeth II to any SSE server, whether they send you
 Access-Control- headers or not. While at it, you may as
 well also forge the User-Agent header, and the
 Origin header.
CORS, and withCredentials, are mainly there
 to prevent Cross-Site
 Request Forgery (CSRF) and similar attacks.

CORS and Fallbacks

Throughout this book I have tried to achieve 99% browser coverage, by showing SSE
 equivalents that work practically as well for older browsers. The good
 news is that CORS is available in XHR[38] and works exactly the same way. Therefore, because they use
 XMLHttpRequest, you don’t need to do anything
 differently for the long-poll or XHR techniques that we studied in
 Chapters 6 and
 7. IE9 and
 earlier are a problem, however.
But before we look at IE8/IE9, let’s add CORS support to XHR for the
 browsers that support it. OK, done that. Yes, it was quick and easy
 because CORS is done entirely with the server headers; nothing changes in
 the JavaScript API.
But that is CORS without credentials support. For instance, our FX
 demo application sends a custom header (Last-Event-ID).
 So, you must use withCredentials, not just plain CORS. Let’s
 add withCredentials to XHR for browsers that support it. This
 requires changing the startXHR() function:
function startXHR(){
...
xhr = new XMLHttpRequest();
...
xhr.open("GET", u, true);
if(lastId)xhr.setRequestHeader("Last-Event-ID", lastId);
xhr.send(null);
}
Instead of the options object that we saw with
 SSE’s EventSource constructor, for XHR you set the third
 parameter to be true.
Next, we do the same change in the startLongPoll
 function:
function startLongPoll(){
...
if(window.XMLHttpRequest)xhr = new XMLHttpRequest();
else{
 document.getElementById("msg").innerHTML +=
 "** Your browser does not support XMLHttpRequest. Sorry.**
";
 }
...
if ("withCredentials" in xhr){
 xhr.open("GET", u, true);
 }else{
 document.getElementById("msg").innerHTML +=
 "** Your browser does not support CORS. Sorry.**
";
 }

if(lastId)xhr.setRequestHeader("Last-Event-ID", lastId);
xhr.send(null);
}
As well as setting the third parameter of
 open() to be true, I also stripped out the code for doing
 Ajax in IE6/7, and give an error message instead. That is IE6/7 taken care
 of, then further down we check for withCredentials
 support, and if it is not available (i.e., IE8/9), we report it as an
 error (we’ll take care of that in the next section).
(You can find the preceding version in the book’s source code as
 fx_client.cors_xhr.html.)
Note
I could have done the same checks in
 startXHR(). I don’t bother because the code in
 connect() is already making sure IE9 and earlier
 don’t get there. I’ve not found a browser that ends up in
 startXHR() but does not support CORS and credentials; if
 you find one, please let me know.

CORS and IE9 and Earlier

I said long-poll and XHR techniques are fine. The iframe technique introduced
 in Chapter 7 is a different matter. It won’t work. For
 security reasons, one iframe cannot access iframe content that came from
 a different domain. And there is no CORS-like workaround that we can use
 to say it is OK. So, what that means is that IE8 and IE9 will have to
 use long-poll if different domains are a possibility in your
 application.
Note
If you just said, “What about IE6 or
 IE7?” you are asking too much: they do not have a CORS mechanism we
 can use, even with XHR (i.e., long-poll). So, IE7 and earlier simply
 cannot be made to work with different origins. You have to host the
 HTML and data push server on the same origin.

Do you need to use withCredentials, too? That
 is, do you need to send either auth headers or cookies to a server in a
 different origin, and have it work with IE8/IE9? Sorry, that is one
 requirement too far. The problem is that IE8 and IE9’s CORS equivalent,
 called XDomainRequest, explicitly refuses to send any custom headers (including auth
 headers) and explicitly refuses to send cookies. If you
 must have authentication and you
 must support IE8/IE9, then you have
 to serve the HTML page and the SSE server from the same
 origin. (Use a load balancer or reverse proxy that will have all your
 servers on the same domain name, and use some other way to specify any
 differences between them.)
Note
IE10 and later already use the XHR technique, and CORS works
 for them. And withCredentials works too! Nothing
 needs to change for IE10 and later.

XDomainRequest is more restrictive[39] than real CORS. The “only GET or POST” restriction does
 not affect us, nor does the restriction that the MIME type must be
 text/plain. But there is one difference you need to
 watch out for: different schemes are never allowed. That means an HTML
 page served from http://example.com cannot access a
 server on https://example.com, and vice versa.
 There is no way for our server to say it is fine.
Here is how the code in startLongPoll() has to change
 to use XDomainRequest so that CORS will work for IE8 and
 IE9:
if ("withCredentials" in xhr){
 xhr.open("GET", u, true);
 }else if (typeof XDomainRequest != "undefined") {
 xhr = new XDomainRequest();
 xhr.open("GET", u);
 }else{
 document.getElementById("msg").innerHTML +=
 "** Your browser does not support CORS. Sorry.**
";
 }
xhr.onreadystatechange = longPollOnReadyStateChange;
As you can see, XDomainRequest is a drop-in
 replacement for XMLHttpRequest. However, the way we do
 feature detection means we cannot see if we need it until after creating
 the XMLHttpRequest object. Because xhr might
 get created again, we cannot do anything
 with it until after this block. That is why the assignment to
 xhr.onreadystatechange has been moved to after this
 block.
The next two sections will show two different ways to handle using
 startLongPoll() with IE9 and earlier.

IE8/IE9: Always Use Long-Poll

If you know for sure that you are always dealing with different origins, it is easy:
 in connect(), change this block of code:
...
else if(isIE9OrEarlier){
 if(window.postMessage)startIframe();
 else startLongPoll();
 }
...
to this:
...
else if(isIE9OrEarlier){
 startLongPoll();
 }
...
As a bonus you can now also rip out the iframe code. Meaning,
 these can go:
	All of function startIframe()

	A couple of clauses in function
 disconnect()

	var iframe and var
 iframeTimer

Handling IE9 and Earlier Dynamically

What about when you do not know if you will hit the security
 restriction? It could be that this is library code that will be used on
 multiple sites. Or perhaps it is simply that the URL is sent to the
 browser client dynamically, and it is not known if you will be
 connecting to the same server or a different one.[40] In that case, change the previous code to look like
 this:
...
else if(is_ie_9_or_earlier){
 if(window.postMessage && isSameDomain())
 start_iframe();
 else start_longpoll();
 }
...
I have hidden all the extra logic in the
 isSameDomain() function.[41] What does the isSameDomain() function have to
 do? It has to compare url with
 window.location.href, and return true if all these are the
 same:
	The protocol (HTTP versus HTTPS)

	The server name (or IP address)

	The port

There are two ways to write this. One uses regexes. The other uses
 a cute little JavaScript+DOM trick. You will see both ways described in
 the following sidebar. (In the book’s source code, fx_client.cors_xhr_ie.html implements both
 ways, but uses the regex approach.)
Comparing Two URLs
Whenever we need to compare multiple parts of two strings,
 regexes are the tool for the job. If you’ve been
 resisting learning regexes because they look utterly unreadable, just
 give in. You can do so much merely knowing the basic syntax.
As an aside, whatever your regex skill level, you might find
 using this tester tool helpful as you follow along with the
 explanation: http://www.regexplanet.com/advanced/javascript/index.html.
Here is the regex to extract the protocol, server name, and port
 from a URL:
/^(https?):[/][/]([^/:]+)(:([^/]+))?/
The / on either side mark the start and end of the
 regex. The ^ means this has to match at the start of the
 string. Parentheses surround something we want to capture, and there
 are three blocks of capturing going on here, shown highlighted
 here:
/^(https?):[/][/]([^/:]+)(:([^/]+))?/
The first string to capture is the scheme (HTTP or HTTPS),
 second is the domain name, and third is the optional port number. The
 ? after the parentheses means zero or once, so if there
 is no port number, the third captured string will simply be
 undefined. The second block, [^/:]+, says
 grab everything until reaching either a forward slash or a colon (the
 slash or colon will not be part of the captured string). The next one,
 [^/]+, says grab everything until reaching a forward
 slash. In both cases the end of the string would also terminate the
 capturing. (There are also another pair of parentheses, which are
 being used for grouping, not for capturing. Their purpose in life is
 to make sure the colon prefix is not part of the port number that is
 captured.)
Between the protocol and the domain name comes ://.
 Why the funny notation (:[/][/])? The forward slash
 symbol is already being used to mark the start and end of the regex,
 so forward slashes need to be escaped if used anywhere else. But, they
 don’t need to be escaped in character classes.
 Square brackets mark character classes. So [/] is the
 same as writing \/, and both mean match one forward
 slash. I personally think the character class approach is clearer
 (especially when putting the regex in a string where backslashes need
 to be escaped: then the forward slash can end up looking like
 \\/ or even \\\\/).
Note
Defining the regex between /.../ implicitly
 creates a RegExp object. You could also create it explicitly with var re
 = new RegExp('^(https?)://([^/:]+)(:([^/]+))?');. These
 approaches are identical. Note that in the second way, “/” is no
 longer used to start and end the regex, so it no longer needs to be
 escaped! So I can use “/” characters directly and not have to write
 them as [/].
I could also have not assigned the regex to the
 re variable, and merged the first two lines into one:
 var m1 = /^(https?):[/][/]([^/:]+)(:([^/]+))?/.exec(url
).
That is a bad idea for two reasons,
 both reasons being that I use the regex twice.
 The first reason is the obvious one of duplicate code being A Bad
 Thing™. The second reason is that by assigning a regex to a
 variable, it gets compiled. Because we use that compiled regex
 twice, we save ourselves the CPU effort of one extra regex
 compilation. Here that is minor. It matters more if the regex is
 inside a 1,000-iteration loop. But, on principle, always assign your
 regexes to a variable if using them more than once. Going further
 with that idea, if a regex is being called a lot, for instance every
 time the server sends us data, then I would be tempted to assign the
 regex to a global variable, so it is only
 compiled once in the whole script.

Turning all that chat into JavaScript code, here is what we
 get:
function isSameDomain(){
var re = /^(https?):[/][/]([^/:]+)(:([^/]+))?/;
var m1 = re.exec(url);
if(!m1)return true;
var m2 = re.exec(window.location.href);
if(m1[1] != m2[1])return false;
if(m1[2] != m2[2])return false;
if(m1[4] != m2[4]){
 if(!m1[4])m1[4] = (m1[1]=='http') ? "80" : "443";
 if(!m2[4])m2[4] = (m2[1]=='http') ? "80" : "443";
 if(m1[4] != m2[4])return false;
 }
return true;
}
exec called on a RegExp object gives
 an array of matches. [1] is the first match (protocol),
 [2] is the second match (server name), and
 [4] is the port number ([3] is the port
 number including the colon, and is not used here). The port number
 needs a couple of extra lines of code, because if one version contains
 the default port number and the other left it off, we want them to
 match. That is, http://example.com/ and http://example.com:80/ are the same thing.
 (If you ever find a browser that treats them differently, file a bug
 report and then add a hack to not execute those two lines for that
 browser!)
The regex fails if the URL is a relative URL. In other words,
 instead of http://example.com/fx_server.php, it
 is /fx_server.php. It turns out that this is a
 solution, not a problem: relative URLs must be the same origin, by
 definition! So, if the regex does not match, assume it is a relative
 URL, and return true immediately. That is what the if(!m1)return
 true; line is doing.
Tip
This assumes you never have genuinely bad values for
 url. But that should be under the control of your
 application. And, anyway, the worst that happens is that with a
 bad URL, IE8 will try to use iframe and fail (for a security
 reason) instead of using long-poll and failing (because the URL is
 bad).

Note
The regex also fails with “//example.com/…” style URLs,
 which are intended to use the same protocol (allowing code to be
 shared between HTTP and HTTPS sites). I chose not to complicate
 the regex even further by handling this. It is better to have two
 or three understandable regexes than one monster that covers all
 cases. To get you started, the regex you seek is
 /^([/][/])([^/:]+)(:([^/]+))?/. The fx_client.cors_xhr_ie.html file
 implements it fully.

I said there was another way to do this. Let me go straight
 into some code:
function isSameDomain(){
var m1 = document.createElement("a");
m1.href = url;
var m2 = document.createElement("a");
m2.href = window.location.href;
if(m1.protocol != m2.protocol)return false;
if(m1.hostname != m2.hostname)return false;
if(m1.port != m2.port)return false;
return true;
}
This relies on the fact that when JavaScript creates an
 <a> tag in the DOM, it will get a full
 Location object, which has all these lovely fields ready
 for you. And not a regex in sight. So cool. The downsides are that it
 is a bit more fragile, it is not available in IE6 or IE7, and there
 may be other small browser differences. You also need to test how it
 works in all the browsers where it will be used for the corner cases
 we had to deal with in the earlier code (relative URLs,
 “//example.com/” URLs, port number explicit in one but not in the
 other, etc.).
Note
I learned the technique at https://gist.github.com/jlong/2428561,
 though it was apparently discovered earlier than that. The
 comments on that page are also educational.

Putting It All Together

Did the last couple of sections make your head hurt, your eyes water, and
 mountain shepherd start to look like an attractive career choice? Internet
 Explorer is powerful like that. Well, the good news is that you’ve almost
 finished this book, and in just a few pages you will be in the appendixes.
 But before we part ways there is just one more example that needs to be
 done: let’s (just for fun) take the FX demo application, the CORS version
 from earlier in this chapter, and merge in the
 auth.html example from earlier in this chapter.
 Therefore, the data flow won’t start until you log in, which can be done
 with either basic auth or cookies. And let’s (just for some
 serious fun[42]) make it work with all our target browsers, too. Well, as
 already explained, that means we simply cannot support IE8 and IE9: their
 CORS implementation is incompatible, by design, with wanting to
 authenticate. (The page will work and can be used with IE8; it will just
 break if you set the target URL to be a different origin.) However,
 fx_client.auth.html does do the check
 for Chromium 25 and earlier and Safari 6 and earlier, forcing them to use
 XHR instead of native SSE, so that CORS will work.
What that means is that only these browsers will use native SSE in
 this example: Firefox 10+, Opera 12+, Chrome 26+, Safari 7+. And, when
 using the “custom” login technique, all browsers will fallback to using
 the XHR technique when the origin is different (because XHR can do POST,
 while SSE only has cookies, and cookies cannot be sent to a different
 domain).
The Backend Files
This example is even more complicated than it needs to be, because
 it supports the three or four different authentication methods that we
 looked at earlier in this chapter, but keeps all the shared code in two
 files. fx_server.auth.inc1.php has
 to come first (sets some globals, defines all the classes and
 functions), then fx_server.auth.inc2.php does the rest of the global code and the main loop. fx_server.auth.inc1.php and fx_server.auth.inc2.php are basically
 fx_server.xhr.php from the end of
 Chapter 7, split into two parts, with a few lines
 moved to the auth-specific files.
The other four files (fx_server.auth.apache.php, fx_server.auth.php.php, fx_server.auth.custom.php, and fx_server.auth.noauth.php) do their specific
 authentication code, in the “…” part of a file like this:
include_once("fx_server.auth.inc1.php");
...
include_once("fx_server.auth.inc2.php");
If the user could connect directly to fx_server.auth.inc1.php or fx_server.auth.inc2.php, it would be bad, so
 we deny access with this .htaccess entry. Yes, it
 is another regex:
<Files ~ "^fx_server[.]auth[.]inc[12][.]php$">
 deny from all
</Files>

Let’s look at the backend first. The preceding sidebar explains why we have
 six files: inc1 and inc2 with
 most of the code (which is very similar to the code at the end of Chapter 7, so won’t be shown again here), and then the other
 four files are similar to the files we saw with the three auth_test.html backends earlier in this
 chapter, the fourth variation being doing no authorization at all. The
 latter is useful to allow us to see what fails due to authorization
 issues, but it also represents what we would have if using the IP address
 as the authorization measure.
Both fx_server.auth.noauth.php
 and fx_server.auth.apache.php are the
 same code (because for fx_server.auth.apache.php Apache takes care of
 the authentication, and this script never gets called if the user is not
 valid):
<?php
include_once("fx_server.auth.inc1.php");
sendHeaders();
include_once("fx_server.auth.incs.php");
(The real code for fx_server.auth.apache.php, in addition to the
 this code, does a quick sanity check to make sure Apache authentication is
 working correctly.)
This is the version of the script fx_server.auth.php.php to handle doing the
 basic authentication inside our PHP script:
<?php
include_once("fx_server.auth.inc1.php");

$user = @$_SERVER["PHP_AUTH_USER"];
$pw = @$_SERVER["PHP_AUTH_PW"];

$fromDB = '$2a$10$4LLeBta770Y0Z7795j.8'.
 'He/ZCQonnvImXIX0egalzE1MuWiEa6PQa';
if(!password_verify($pw, $fromDB)){
 header('WWW-Authenticate: Basic realm="SSE Book"');
 header("HTTP/1.0 401 Unauthorized");
 echo "Please authenticate.\n";
 exit;
 }

sendHeaders();

include_once("fx_server.auth.inc2.php");
Notice how the sendHeaders() call comes
 after the validation; if a problem occurs, we want to
 send back auth headers instead of SSE headers.
Finally, here is the most complex version, for doing a custom
 authentication based on cookie data. Except unlike the earlier example, it
 will accept the authentication data coming in by either cookies or POST
 data:
<?php
include_once("fx_server.auth.inc1.php");

sendHeaders();

if(array_key_exists("login",$_COOKIE))$d = $_COOKIE["login"];
elseif(array_key_exists("login",$_POST))$d = $_POST["login"];
else{
 sendData(array(
 "action"=>"auth",
 "msg"=>"The login data is missing. Exiting."
));
 exit;
 }
if(strpos($d,",")===false){
 sendData(array(
 "action"=>"auth",
 "msg"=>"The login data is invalid. Exiting."
));
 exit;
 }
list($user,$pw) = explode(",",$d);

$fromDB = '$2a$10$4LLeBta770Y0Z7795j.8'.
 'He/ZCQonnvImXIX0egalzE1MuWiEa6PQa';
if(!password_verify($pw,$fromDB)){
 sendData(array(
 "action"=>"auth",
 "msg"=>"The login is bad. Exiting."
));
 exit;
 }

include_once("fx_server.auth.inc2.php");
sendHeaders() is called first, so that we can use
 sendData() to send back auth failures. They will be given to
 the browser as SSE messages.
Note
Troubleshooting an SSE backend from inside a browser can be a
 frustrating experience. But, unlike in earlier chapters, running PHP
 scripts directly from the command line is not a choice, because we need
 to specify headers and cookies. The best option for these quick tests is
 curl. Here are commands to test each of the three
 authentication approaches. (They assume the files are on http://example.com, in an
 sse/ directory, so adapt them for your own
 installation.)
curl -uoreilly:test http://example.com/sse/fx_server.auth.apache.php

curl -uoreilly:test http://example.com/sse/fx_server.auth.php.php

curl --cookie "login=oreilly,test" ↵
 http://example.com/sse/fx_server.auth.custom.php
Add -v to see headers, or --trace - for
 information overload about what is passing back and forth. Add -H
 "Origin: http://127.0.0.1" to specify an origin.
Play around with the cookie or username:password values to see the
 error reporting.
Also make sure that these fail to connect:
curl http://example.com/sse/fx_server.auth.inc1.php

curl http://example.com/sse/fx_server.auth.inc2.php

Now to the frontend. When you load it, it looks like Figure 9-1.
[image: Initial view of fx_client.auth.html]

Figure 9-1. Initial view of fx_client.auth.html

Following are the main differences from the previous versions,
 fx_client.xhr.html (end of Chapter 7) and fx_client.cors.html (earlier in this
 chapter):
	An HTML form to allow you to select: (1) the connection
 technique (SSE, XHR, iframe, long-poll) to use; (2) the target URL
 (e.g., you can change the domain name, or IP address, or switch
 between HTTP and HTTPS); and (3) the auth technique to use.

	A no-auth technique has been added.

	Older versions of Chrome and Safari are detected, based on
 their user-agents.

	When using the custom connection method with a
 different origin, XHR will POST the data, instead of
 using a cookie, and Native SSE will switch to also using POST by
 using the XHR fallback.

	Auth failures are intercepted and reported.

Taken together, that makes fx_client.auth.html the longest source code
 file, but a lot of the new code is form handling, which we will not look
 at in any depth here. I am also not going to look at the Chrome/Safari
 detection, which is just applying a few regexes.
The first code I will show is quite simple. When our custom
 authentication code (fx_server.auth.custom.php) has an error to
 report, it sends it back using the SSE data stream. It uses the action
 field set to "auth" to identify this. So, in
 processOneLine(), the following block has been added:
function processOneLine(s){
...
else if(d.action == "auth"){
 var x = document.getElementById("msg");
 x.innerHTML += "Auth Failure:" + d.msg + "
";
 disconnect();
 }
}
The call to disconnect() is very important: we don’t
 want it to keep trying to connect, and we don’t even want a keep-alive
 mechanism to keep trying to connect.
Now that we have a form, what happens if the user clicks one of the
 connect buttons when a connection is already running? There is a new
 function called reconnect() that is used in this case:
this.reconnect = function(newUrl,newOptions){
disconnect();
url = newUrl;
for(var key in newOptions)
 options[key] = newOptions[key];
connect();
}
So, it first calls disconnect() to make sure not just
 that the current connection is closed, but that all timers get stopped.
 Then it sets the new URL, and any new options, and then it tries to
 connect to the new URL with those new settings.
The fallback from SSE to XHR has been implemented with the following
 highlighted changes to the startSSE() function:
function startEventSource(){
if(es){es.close();es=null;}
if(!isSameDomain()){
 if(options.post || isOldSafariChrome){startXHR();return;}
 }
if(options.post)document.cookie = options.post +"; path=/";
var u = url;
if(lastId)u += "lastId="
 + encodeURIComponent(lastId) + "&";
es = new EventSource(u, { withCredentials: true });
es.addEventListener("message", function(e){processOneLine(e.data);},false);
es.addEventListener("error", handleError, false);
}
As background to this, the options object now has an
 optional post element, in which we put
 "login=username,password"
 when using custom authentication. The first of the highlighted clauses is
 saying that when connecting to a different origin and wanting to send a
 cookie it will not work, so use the XHR approach instead. The second part
 says if wanting to send a cookie and connecting to the same origin, then
 set a cookie.
The || isOldSafariChrome part is because old browsers
 that haven’t implemented CORS for SSE will not work with a different
 origin, whether sending a cookie or not, so they should use XHR here
 instead.
The second half of that is how to handle POST in
 startXHR():
function startXHR(){
...
var ds = null;
fallback = "xhr=1&t=" + (new Date().getTime());
if(options.post){
 xhr.open("POST", url, true);
 xhr.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
 ds = fallback + "&" + options.post;
 }
else{
 xhr.open("GET", url + fallback, true);
 }
...
xhr.send(ds);
}
Note
The code you will see in fx_client.xhr.html is quite different from
 this, because it has been refactored to move most of the code into a
 helper function, called useXMLHttpRequest(), that is then
 shared between both startXHR() and
 startLongPoll().

So, when options.post is not set, it is the same as
 the previous code: xhr and t will be sent in the
 URL. But when options.post is set, we have to set an extra
 header, then build all the data we want to send in ds, which
 is then passed to xhr.send(ds).
And that is it. Try a few tests. For example, if you are browsing it
 at http://example.com/sse/listings/fx_client.auth.html,
 then change “Base URL to connect to” to
 “https://example.com/sse/listings/”, or
 “http://www1.example.com/sse/listings/”, etc. Then try each of the
 buttons, and watch to see if the data comes through, or if you get an
 authentication error. And, assuming data comes through, have a look in
 Firebug (or whatever developer tools you are using) to see if the
 connection is using SSE or XHR or long-poll, and if it is using GET or
 POST, and to see what cookies are being sent.

The Future Holds More of the Same

This has been a long and complicated chapter. It would have been
 considerably simpler if (1) the SSE standard, and its implementations,
 allowed us to set our own headers and send POST data, as we can with Ajax;
 (2) old browsers did not exist.
Based on the experience of the past 15 years, old browsers and
 browser bugs will always be with us, and we just have to be prepared to
 cope with them. However, for dealing with point (1) (the limitations of
 the SSE standard), the fact that we had already written the fallbacks for
 the older browsers meant that we could relatively easily handle those
 limitations. In fact, the workaround ended up as simple as this:
if(!isSameDomain()){
 if(options.post || isOldSafariChrome){startXHR();return;}
 }
The Server-Sent Events API is still quite new, and I would
 not be surprised if it gets some improvements in the next year or two. But
 it is also very useful even in its current form, and I hope you find many
 good uses for it in your own projects.

[33] In Chrome at the time of writing, EventSource
 will not work with a self-signed SSL certificate, nor will any of the
 fallbacks.

[34] Did I say identical? There is a key difference when it comes to
 using credentials. See Constructors and Credentials.

[35] You can follow the bug report at http://code.google.com/p/chromium/issues/detail?id=96007.

[36] Well, not quite. In Firefox, at least, you can send cookies from
 http://example.com to
 https://example.com, and vice versa (i.e.,
 origins that differ in just the scheme part). My suggestion is not
 to rely on this behavior, because it is inconsistent with the
 CORS/cookies behavior of XHR and therefore might change in the
 future.

[37] Those that are allowed to be sent. Other cookies still apply so,
 for instance, a cookie for www1.example.com
 cannot be sent to www2.example.com.

[38] Firefox has supported CORS with XHR since 3.5, Chrome since 4.0,
 Safari since 4.0, IE since either 8.0 or 10.0 depending on the level
 of support, and iOS Safari and Android since 3.2 and 2.1,
 respectively. In other words, excepting Internet Explorer, all your
 users can be assumed to have CORS support for
 XMLHttpRequest.

[39] See http://bit.ly/1csbEHT for how it
 works in IE8 and IE9. Note that only GET or POST are allowed,
 cookies are not sent, and it must be
 text/plain.

[40] I find this “URL is sent to the browser client dynamically”
 scenario a bit of a stretch. In such a case it sounds like you would
 mostly be connecting to another server. If so, simplify the code to
 always use long-poll.

[41] This function will make an appearance again, in the final
 example in this chapter, when deciding whether to use
 SSE-with-cookies or having to fallback to XHR so that POST data can
 be sent.

[42] If you are cute, female, and actually thought that does sound
 like fun, we should get together…no, hang on, there has to be a catch.
 Nobody could be that perfect. You probably have some really weird
 hobby, involving toads or Excel or something.

Appendix A. The SSE Standard

The official standard for Server-Sent Events is a “W3C Candidate
 Recommendation” at the time of writing. The latest published version is
 available from http://www.w3.org/TR/eventsource/.
W3C Candidate Recommendation 11 December 2012

	This Version:
	http://www.w3.org/TR/2012/CR-eventsource-20121211/

	Latest Published Version:
	http://www.w3.org/TR/eventsource/

	Latest Editor’s Draft:
	http://dev.w3.org/html5/eventsource/

	Previous Versions:
	http://www.w3.org/TR/2012/WD-eventsource-20121023/
http://www.w3.org/TR/2012/WD-eventsource-20120426/
http://www.w3.org/TR/2011/WD-eventsource-20111020/
http://www.w3.org/TR/2011/WD-eventsource-20110310/
http://www.w3.org/TR/2011/WD-eventsource-20110208/
http://www.w3.org/TR/2009/WD-eventsource-20091222/
http://www.w3.org/TR/2009/WD-eventsource-20091029/
http://www.w3.org/TR/2009/WD-eventsource-20090423/

	Editor:
	Ian Hickson (ian@hixie.ch), Google, Inc.

Copyright
 © 2012 W3C® (MIT, ERCIM, Keio), All Rights
 Reserved. W3C liability,
 trademark
 and document
 use rules apply.
The bulk of the text of this specification is also available in the
 WHATWG Web
 Applications 1.0 specification, under a license that permits reuse
 of the specification text.
Abstract

This specification defines an API for opening an HTTP connection
 for receiving push notifications from a server in the form of DOM
 events. The API is designed such that it can be extended to work with
 other push notification schemes such as Push SMS.

Status of This Document

This section describes the status of this document at
 the time of its publication. Other documents may supersede this
 document. A list of current W3C publications and the latest revision of
 this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.
If you wish to make comments regarding this document in a manner
 that is tracked by the W3C, please submit them via using our
 public bug database. If you do not have an account then you can
 enter feedback using the form at http://www.w3.org/TR/eventsource/.
You can also e-mail feedback to
 public-webapps@w3.org (subscribe,
 archives),
 or whatwg@whatwg.org (subscribe,
 archives).
 All feedback is welcome.
Notifications of changes to this specification are sent along with
 notifications of changes to related specifications using the following
 mechanisms:
	E-mail notifications of changes
	Commit-Watchers mailing list (complete source diffs): http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org

	Browsable version-control record of all changes:
	CVSWeb interface with side-by-side diffs: http://dev.w3.org/cvsweb/html5/
Annotated summary with unified diffs: http://html5.org/tools/web-apps-tracker
Raw Subversion interface: svn
 checkout http://svn.whatwg.org/webapps/

The W3C Web Applications Working
 Group is the W3C working group responsible for this
 specification’s progress along the W3C Recommendation track. This
 specification is the 11 December 2012 Candidate Recommendation. There
 were no comments or bugs submitted against the 23 October 2012
 Last Call Working Draft.
Publication as a Candidate Recommendation does not imply
 endorsement by the W3C Membership. This is a draft document and may be
 updated, replaced or obsoleted by other documents at any time. It is
 inappropriate to cite this document as other than work in
 progress.
This document was produced by a group operating under the 5 February
 2004 W3C Patent Policy. W3C maintains a public list of any
 patent disclosures made in connection with the deliverables of
 the group; that page also includes instructions for disclosing a patent.
 An individual who has actual knowledge of a patent which the individual
 believes contains Essential
 Claim(s) must disclose the information in accordance with section
 6 of the W3C Patent Policy.
Candidate Recommendation Exit Criteria

To exit the Candidate Recommendation (CR) stage, the following
 criteria must have been met:
	There will be at least two interoperable implementations
 passing all approved test cases in the test
 suite for this specification. An implementation is to be
 available (i.e. for download), shipping (i.e. not private), and
 not experimental (i.e. intended for a wide audience). The working
 group will decide when the test suite is of sufficient quality to
 test interoperability and will produce an implementation report
 (hosted together with the test suite).

	A minimum of two months of the CR stage will have elapsed
 (i.e. not until after 11 February 2013). This is to ensure that
 enough time is given for any remaining major errors to be caught.
 The CR period will be extended if implementations are slow to
 appear.

Table of Contents

	Introduction

	Conformance
 requirements

	Terminology

	The
 EventSource interface

	Processing
 model

	Parsing
 an event stream

	Interpreting
 an event stream

	Notes

	Connectionless
 push and other features

	Garbage
 collection

	IANA
 considerations

	References

	Acknowledgements

1 Introduction

This section is non-normative.
To enable servers to push data to Web pages over HTTP or using
 dedicated server-push protocols, this specification introduces the
 EventSource
 interface.
Using this API consists of creating an EventSource
 object and registering an event listener.
 var source = new
 EventSource('updates.cgi'); source.onmessage = function (event) {
 alert(event.data); };
On the server-side, the script (”updates.cgi" in this case) sends messages in
 the following form, with the text/event-stream
 MIME type:
 data: This is the first message.
 data: This is the second message, it data: has two lines. data: This is
 the third message.
Authors can separate events by using different event types. Here
 is a stream that has two event types, “add” and “remove”:
 event: add data: 73857293 event:
 remove data: 2153 event: add data: 113411
The script to handle such a stream would look like this (where
 addHandler and removeHandler are functions that take one
 argument, the event):
 var source = new
 EventSource('updates.cgi'); source.addEventListener('add', addHandler,
 false); source.addEventListener('remove', removeHandler, false);

The default event type is “message”.
Event stream requests can be redirected using HTTP 301 and 307
 redirects as with normal HTTP requests. Clients will reconnect if the
 connection is closed; a client can be told to stop reconnecting using
 the HTTP 204 No Content response code.
Using this API rather than emulating it using XMLHttpRequest or an iframe allows the user agent to make better
 use of network resources in cases where the user agent implementor and the network operator are
 able to coordinate in advance. Amongst other benefits, this can result
 in significant savings in battery life on portable devices. This is
 discussed further in the section below on connectionless
 push.

2 Conformance requirements

All diagrams, examples, and notes in this specification are
 non-normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD
 NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of
 this document are to be interpreted as described in RFC2119. For
 readability, these words do not appear in all uppercase letters in this
 specification. [RFC2119]
Requirements phrased in the imperative as part of algorithms (such
 as “strip any leading space characters” or “return false and abort these
 steps”) are to be interpreted with the meaning of the key word (“must”,
 “should”, “may”, etc) used in introducing the algorithm.
Some conformance requirements are phrased as requirements on
 attributes, methods or objects. Such requirements are to be interpreted
 as requirements on user agents.
Conformance requirements phrased as algorithms or specific steps
 may be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this specification
 are intended to be easy to follow, and not intended to be
 performant.)
The only conformance class defined by this specification is user
 agents.
User agents may impose implementation-specific limits on otherwise
 unconstrained inputs, e.g. to prevent denial of service attacks, to
 guard against running out of memory, or to work around platform-specific
 limitations.
When support for a feature is disabled (e.g. as an emergency
 measure to mitigate a security problem, or to aid in development, or for
 performance reasons), user agents must act as if they had no support for
 the feature whatsoever, and as if the feature was not mentioned in this
 specification. For example, if a particular feature is accessed via an
 attribute in a Web IDL interface, the attribute itself would be omitted
 from the objects that implement that interface — leaving the attribute
 on the object but making it return null or throw an exception is
 insufficient.
2.1 Dependencies

This specification relies on several other underlying
 specifications.
	HTML
	Many fundamental concepts from HTML are used by this
 specification. [HTML]

	WebIDL
	The IDL blocks in this specification use the semantics of
 the WebIDL specification. [WEBIDL]

	WebMessaging
	MessageEvent is defined in [WEBMESSAGING].

3 Terminology

The construction “a Foo
 object”, where Foo is actually an
 interface, is sometimes used instead of the more accurate “an object
 implementing the interface Foo.”
The term DOM is used to refer to the API set made available to
 scripts in Web applications, and does not necessarily imply the
 existence of an actual Document
 object or of any other Node objects
 as defined in the DOM Core specifications. [DOMCORE]
An IDL attribute is said to be getting when
 its value is being retrieved (e.g. by author script), and is said to be
 setting when a new value is assigned to it.

4 The EventSource interface

 [Constructor(DOMString url,
 optional EventSourceInit eventSourceInitDict)] interface EventSource :
 EventTarget { readonly attribute DOMString url; readonly attribute
 boolean withCredentials; // ready state const unsigned short CONNECTING
 = 0; const unsigned short OPEN = 1; const unsigned short CLOSED = 2;
 readonly attribute unsigned short readyState; // networking attribute
 EventHandler onopen; attribute EventHandler onmessage; attribute
 EventHandler onerror; void close(); }; dictionary EventSourceInit {
 boolean withCredentials = false; };
The EventSource() constructor
 takes one or two arguments. The first specifies the URL to
 which to connect. The second specifies the settings, if any, in the form
 of an EventSourceInit
 dictionary. When the EventSource()
 constructor is invoked, the UA must run these steps:
	Resolve the URL specified in the first argument, relative to
 the entry script’s base URL. [HTML]

	If the previous step failed, then throw a SyntaxError exception.

	Create a new EventSource
 object.

	Let CORS mode be Anonymous.

	If the second argument is present, and the withCredentials
 dictionary member has the value true, then set CORS mode to Use
 Credentials and initialize the new EventSource
 object’s withCredentials
 attribute to true.

	Return the new EventSource
 object, and continue these steps in the background (without blocking
 scripts).

	Do a potentially CORS-enabled fetch of the resulting absolute
 URL using the entry script’s referrer source, with the
 mode being CORS mode, and the
 origin being the entry script’s origin, and
 process the resource obtained in this fashion, if any, as described
 below.
Note
The definition of the fetching algorithm (which is used by
 CORS) is such that if the browser is already fetching the resource
 identified by the given absolute URL, that connection can be
 reused, instead of a new connection being established. All
 messages received up to this point are dispatched immediately, in
 this case.

This constructor must be visible when the script’s global object
 is either a Window object or an
 object implementing the WorkerUtils
 interface.
The url attribute must return
 the absolute URL that resulted from resolving the value that was passed
 to the constructor.
The withCredentials attribute
 must return the value to which it was last initialized. When the object
 is created, it must be initialized to false.
The readyState attribute
 represents the state of the connection. It can have the following
 values:
	CONNECTING (numeric value
 0)
	The connection has not yet been established, or it was
 closed and the user agent is reconnecting.

	OPEN (numeric value
 1)
	The user agent has an open connection and is dispatching
 events as it receives them.

	CLOSED (numeric value
 2)
	The connection is not open, and the user agent is not trying
 to reconnect. Either there was a fatal error or the close()
 method was invoked.

When the object is created its readyState
 must be set to CONNECTING
 (0). The rules given below for handling the connection define when the
 value changes.
The close() method must abort
 any instances of the fetch algorithm started for this EventSource
 object, and must set the readyState
 attribute to CLOSED.
The following are the event handlers (and their corresponding
 event handler event types) that must be supported, as IDL attributes, by
 all objects implementing the EventSource
 interface:
	Event handler	Event handler event type
	onopen	open
	onmessage	message
	onerror	error

In addition to the above, each EventSource
 object has the following associated with it:
	A reconnection time, in milliseconds. This must initially be a
 user-agent-defined value, probably in the region of a few
 seconds.

	A last event ID string. This must initially be the empty
 string.

These values are not currently exposed on the interface.

5 Processing model

The resource indicated in the argument to the EventSource
 constructor is fetched when the constructor is run.
For HTTP connections, the Accept header may be included; if included, it
 must contain only formats of event framing that are supported by the
 user agent (one of which must be text/event-stream,
 as described below).
If the event source’s last
 event ID string is not the empty string, then a Last-Event-ID
 HTTP header must be included with the request, whose value is the value
 of the event source’s last
 event ID string, encoded as UTF-8.
User agents should use the Cache-Control:
 no-cache header in requests to bypass any caches for requests
 of event sources. (This header is not a custom request header, so the
 user agent will still use the CORS simple cross-origin request
 mechanism.) User agents should ignore HTTP cache headers in the
 response, never caching event sources.
As data is received, the tasks queued by the networking task
 source to handle the data must act as follows.
HTTP 200 OK responses with a Content-Type header specifying the
 type text/event-stream,
 ignoring any MIME type parameters, must be processed line by line as
 described below.
When a successful response with a supported MIME type is received,
 such that the user agent begins parsing the contents of the stream, the
 user agent must announce
 the connection.
The task that the networking task source places on the task queue
 once the fetching algorithm for such a resource (with the correct MIME
 type) has completed must cause the user agent to asynchronously reestablish
 the connection. This applies whether the connection is closed
 gracefully or unexpectedly. It doesn’t apply for the error conditions
 listed below except where explicitly specified.
HTTP 200 OK responses that have a Content-Type specifying an
 unsupported type, or that have no Content-Type at all, must cause the
 user agent to fail the
 connection.
HTTP 305 Use Proxy, 401 Unauthorized, and 407 Proxy Authentication
 Required should be treated transparently as for any other
 subresource.
HTTP 301 Moved Permanently, 302 Found, 303 See Other, and 307
 Temporary Redirect responses are handled by the fetching and CORS
 algorithms. In the case of 301 redirects, the user agent must also
 remember the new URL so that subsequent requests for this resource for
 this EventSource
 object start with the URL given for the last 301 seen for requests for
 this object.
HTTP 500 Internal Server Error, 502 Bad Gateway, 503 Service
 Unavailable, and 504 Gateway Timeout responses, and any network error
 that prevents the connection from being established in the first place
 (e.g. DNS errors), must cause the user agent to asynchronously reestablish
 the connection.
Any other HTTP response code not listed here must cause the user
 agent to fail the
 connection.
For non-HTTP protocols, UAs should act in equivalent ways.
When a user agent is to announce the connection, the user agent
 must queue a task which, if the readyState
 attribute is set to a value other than CLOSED,
 sets the readyState
 attribute to OPEN
 and fires a simple event named open
 at the EventSource
 object.
When a user agent is to reestablish the connection, the user agent
 must run the following steps. These steps are run asynchronously, not as
 part of a task. (The tasks that it queues, of course, are run like
 normal tasks and not asynchronously.)
	Queue a task to run the following steps:
	If the readyState
 attribute is set to CLOSED,
 abort the task.

	Set the readyState
 attribute to CONNECTING.

	Fire a simple event named error at the EventSource
 object.

	Wait a delay equal to the reconnection time of the event
 source.

	Optionally, wait some more. In particular, if the previous
 attempt failed, then user agents might introduce an exponential
 backoff delay to avoid overloading a potentially already overloaded
 server. Alternatively, if the operating system has reported that
 there is no network connectivity, user agents might wait for the
 operating system to announce that the network connection has
 returned before retrying.

	Wait until the aforementioned task has run, if it has not yet
 run.

	Queue a task to run the following steps:
	If the readyState
 attribute is not set to CONNECTING,
 abort these steps.

	Perform a potentially CORS-enabled fetch of the absolute
 URL of the event source resource, using the same
 referrer source, and with the same
 mode and origin, as
 those used in the original request triggered by the EventSource()
 constructor, and process the resource obtained in this fashion,
 if any, as described earlier in this section.

When a user agent is to fail the connection, the user agent must
 queue a task which, if the readyState
 attribute is set to a value other than CLOSED,
 sets the readyState
 attribute to CLOSED
 and fires a simple event named error
 at the EventSource
 object. Once the user agent has failed the
 connection, it does not attempt to
 reconnect!
The task source for any tasks that are queued by EventSource
 objects is the remote event task source.

6 Parsing an event stream

This event stream format’s MIME type is text/event-stream.
The event stream format is as described by the stream production of the following ABNF, the
 character set for which is Unicode. [ABNF]
 stream = [bom] *event event =
 *(comment / field) end-of-line comment = colon *any-char end-of-line
 field = 1*name-char [colon [space] *any-char] end-of-line
 end-of-line = (cr lf / cr / lf) ; characters lf = %x000A ; U+000A LINE
 FEED (LF) cr = %x000D ; U+000D CARRIAGE RETURN (CR) space = %x0020 ;
 U+0020 SPACE colon = %x003A ; U+003A COLON (:) bom = %xFEFF ; U+FEFF
 BYTE ORDER MARK name-char = %x0000-0009 / %x000B-000C / %x000E-0039 /
 %x003B-10FFFF ; a Unicode character other than U+000A LINE FEED (LF), ;
 U+000D CARRIAGE RETURN (CR), or U+003A COLON (:) any-char = %x0000-0009
 / %x000B-000C / %x000E-10FFFF ; a Unicode character other than U+000A
 LINE FEED (LF) ; or U+000D CARRIAGE RETURN (CR)
Event streams in this format must always be encoded as UTF-8.
 [RFC3629]
Lines must be separated by either a U+000D CARRIAGE RETURN U+000A
 LINE FEED (CRLF) character pair, a single U+000A LINE FEED (LF)
 character, or a single U+000D CARRIAGE RETURN (CR) character.
Since connections established to remote servers for such resources
 are expected to be long-lived, UAs should ensure that appropriate
 buffering is used. In particular, while line buffering with lines are
 defined to end with a single U+000A LINE FEED (LF) character is safe,
 block buffering or line buffering with different expected line endings
 can cause delays in event dispatch.

7 Interpreting an event stream

Streams must be decoded as UTF-8, with error handling. [HTML]
One leading U+FEFF BYTE ORDER MARK character must be ignored if
 any are present.
The stream must then be parsed by reading everything line by line,
 with a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pair, a
 single U+000A LINE FEED (LF) character not preceded by a U+000D CARRIAGE
 RETURN (CR) character, and a single U+000D CARRIAGE RETURN (CR)
 character not followed by a U+000A LINE FEED (LF) character being the
 ways in which a line can end.
When a stream is parsed, a data buffer, an event type buffer, and
 a last event ID buffer must be associated with it. They must be
 initialized to the empty string
Lines must be processed, in the order they are received, as
 follows:
	If the line is empty (a blank line)
	Dispatch
 the event, as defined below.

	If the line starts with a U+003A COLON character (:)
	Ignore the line.

	If the line contains a U+003A COLON character (:)
	Collect the characters on the line before the first U+003A
 COLON character (:), and let field be that string.
Collect the characters on the line after the first U+003A
 COLON character (:), and let value be that string. If value starts
 with a U+0020 SPACE character, remove it from value.
Process the
 field using the steps described below, using field as the
 field name and value as the field value.

	Otherwise, the string is not empty but does not contain a
 U+003A COLON character (:)
	Process the
 field using the steps described below, using the whole
 line as the field name, and the empty string as the field
 value.

Once the end of the file is reached, any pending data must be
 discarded. (If the file ends in the middle of an event, before the final
 empty line, the incomplete event is not dispatched.)
The steps to process the field given a field name and a field
 value depend on the field name, as given in the following list. Field
 names must be compared literally, with no case folding performed.
	If the field name is “event”
	Set the event type buffer to field value.

	If the field name is “data”
	Append the field value to the data buffer, then append a
 single U+000A LINE FEED (LF) character to the data buffer.

	If the field name is “id”
	Set the last event ID buffer to the field value.

	If the field name is “retry”
	If the field value consists of only ASCII digits, then
 interpret the field value as an integer in base ten, and set the
 event stream’s reconnection
 time to that integer. Otherwise, ignore the field.

	Otherwise
	The field is ignored.

When the user agent is required to dispatch the event, then the
 user agent must act as follows:
	Set the last
 event ID string of the event source to value of the last
 event ID buffer. The buffer does not get reset, so the last
 event ID string of the event source remains set to this
 value until the next time it is set by the server.

	If the data buffer is an empty string, set the data buffer and
 the event type buffer to the empty string and abort these
 steps.

	If the data buffer’s last character is a U+000A LINE FEED (LF)
 character, then remove the last character from the data
 buffer.

	Create an event that uses the MessageEvent interface, with the event
 type message, which does not
 bubble, is not cancelable, and has no default action. The data attribute must be initialized to the
 value of the data buffer, the origin attribute must be initialized to
 the Unicode serialization of the origin of the event stream’s final
 URL (i.e. the URL after redirects), and the lastEventId attribute must be initialized
 to the last
 event ID string of the event source. This event is not
 trusted.

	If the event type buffer has a value other than the empty
 string, change the type of the newly created event to equal the
 value of the event type buffer.

	Set the data buffer and the event type buffer to the empty
 string.

	Queue a task which, if the readyState
 attribute is set to a value other than CLOSED,
 dispatches the newly created event at the EventSource
 object.

Note
If an event doesn’t have an “id” field, but an earlier event did
 set the event source’s last
 event ID string, then the event’s lastEventId field will be set to the value
 of whatever the last seen “id” field was.

The following event stream, once followed by a blank line:
 data: YHOO data: +2 data: 10

…would cause an event message
 with the interface MessageEvent to be
 dispatched on the EventSource
 object. The event’s data attribute
 would contain the string YHOO\n+2\n10
 (where \n represents a
 newline).
This could be used as follows:
 var stocks = new
 EventSource("http://stocks.example.com/ticker.php"); stocks.onmessage =
 function (event) { var data = event.data.split('\n');
 updateStocks(data[0], data[1], data[2]); };
…where updateStocks() is a
 function defined as:
 function updateStocks(symbol,
 delta, value) { ... }
…or some such.
The following stream contains four blocks. The first block has
 just a comment, and will fire nothing. The second block has two fields
 with names “data” and “id” respectively; an event will be fired for this
 block, with the data “first event”, and will then set the last event ID
 to “1” so that if the connection died between this block and the next,
 the server would be sent a Last-Event-ID
 header with the value “1”. The third block fires an event with data
 “second event”, and also has an “id” field, this time with no value,
 which resets the last event ID to the empty string (meaning no Last-Event-ID
 header will now be sent in the event of a reconnection being attempted).
 Finally, the last block just fires an event with the data " third event”
 (with a single leading space character). Note that the last still has to
 end with a blank line, the end of the stream is not enough to trigger
 the dispatch of the last event.
 : test stream data: first event
 id: 1 data:second event id data: third event
The following stream fires two events:
 data data data data:

The first block fires events with the data set to the empty
 string, as would the last block if it was followed by a blank line. The
 middle block fires an event with the data set to a single newline
 character. The last block is discarded because it is not followed by a
 blank line.
The following stream fires two identical events:
 data:test data: test

This is because the space after the colon is ignored if
 present.

8 Notes

Legacy proxy servers are known to, in certain cases, drop HTTP
 connections after a short timeout. To protect against such proxy
 servers, authors can include a comment line (one starting with a ':'
 character) every 15 seconds or so.
Authors wishing to relate event source connections to each other
 or to specific documents previously served might find that relying on IP
 addresses doesn’t work, as individual clients can have multiple IP
 addresses (due to having multiple proxy servers) and individual IP
 addresses can have multiple clients (due to sharing a proxy server). It
 is better to include a unique identifier in the document when it is
 served and then pass that identifier as part of the URL when the
 connection is established.
Authors are also cautioned that HTTP chunking can have unexpected
 negative effects on the reliability of this protocol. Where possible,
 chunking should be disabled for serving event streams unless the rate of
 messages is high enough for this not to matter.
Clients that support HTTP’s per-server connection limitation might
 run into trouble when opening multiple pages from a site if each page
 has an EventSource
 to the same domain. Authors can avoid this using the relatively complex
 mechanism of using unique domain names per connection, or by allowing
 the user to enable or disable the EventSource
 functionality on a per-page basis, or by sharing a single EventSource
 object using a shared worker. [WEBWORKERS]

9 Connectionless push and other features

User agents running in controlled environments, e.g. browsers on
 mobile handsets tied to specific carriers, may offload the management of
 the connection to a proxy on the network. In such a situation, the user
 agent for the purposes of conformance is considered to include both the
 handset software and the network proxy.
For example, a browser on a mobile device, after having
 established a connection, might detect that it is on a supporting
 network and request that a proxy server on the network take over the
 management of the connection. The timeline for such a situation might be
 as follows:
	Browser connects to a remote HTTP server and requests the
 resource specified by the author in the EventSource
 constructor.

	The server sends occasional messages.

	In between two messages, the browser detects that it is idle
 except for the network activity involved in keeping the TCP
 connection alive, and decides to switch to sleep mode to save
 power.

	The browser disconnects from the server.

	The browser contacts a service on the network, and requests
 that that service, a “push proxy”, maintain the connection
 instead.

	The “push proxy” service contacts the remote HTTP server and
 requests the resource specified by the author in the EventSource
 constructor (possibly including a Last-Event-ID
 HTTP header, etc).

	The browser allows the mobile device to go to sleep.

	The server sends another message.

	The “push proxy” service uses a technology such as OMA push to
 convey the event to the mobile device, which wakes only enough to
 process the event and then returns to sleep.

This can reduce the total data usage, and can therefore result in
 considerable power savings.
As well as implementing the existing API and text/event-stream
 wire format as defined by this specification and in more distributed
 ways as described above, formats of event framing defined by other
 applicable specifications may be supported. This specification does not
 define how they are to be parsed or processed.

10 Garbage collection

While an EventSource
 object’s readyState
 is CONNECTING,
 and the object has one or more event listeners registered for open, message or error events, there must be a strong reference
 from the Window or WorkerUtils object that the EventSource
 object’s constructor was invoked from to the EventSource
 object itself.
While an EventSource
 object’s readyState
 is OPEN,
 and the object has one or more event listeners registered for message or error events, there must be a strong reference
 from the Window or WorkerUtils object that the EventSource
 object’s constructor was invoked from to the EventSource
 object itself.
While there is a task queued by an EventSource
 object on the remote
 event task source, there must be a strong reference from the
 Window or WorkerUtils object that the EventSource
 object’s constructor was invoked from to that EventSource
 object.
If a user agent is to forcibly close an EventSource
 object (this happens when a Document
 object goes away permanently), the user agent must abort any instances
 of the fetch algorithm started for this EventSource
 object, and must set the readyState
 attribute to CLOSED.
If an EventSource
 object is garbage collected while its connection is still open, the user
 agent must abort any instance of the fetch algorithm opened by this
 EventSource.
Note
It’s possible for one active network connection to be shared by
 multiple EventSource
 objects and their fetch algorithms, which is why the above is phrased
 in terms of aborting the fetch algorithm and not the actual underlying
 download.

11 IANA considerations

11.1 text/event-stream

This registration is for community review and will be submitted
 to the IESG for review, approval, and registration with IANA.
	Type name:
	text

	Subtype name:
	event-stream

	Required parameters:
	No parameters

	Optional parameters:
		charset
	The charset
 parameter may be provided. The parameter’s value must be
 "utf-8“. This parameter
 serves no purpose; it is only allowed for compatibility
 with legacy servers.

	Encoding considerations:
	8bit (always UTF-8)

	Security considerations:
	An event stream from an origin distinct from the origin of
 the content consuming the event stream can result in information
 leakage. To avoid this, user agents are required to apply CORS
 semantics. [CORS]
Event streams can overwhelm a user agent; a user agent is
 expected to apply suitable restrictions to avoid depleting local
 resources because of an overabundance of information from an
 event stream.
Servers can be overwhelmed if a situation develops in
 which the server is causing clients to reconnect rapidly.
 Servers should use a 5xx status code to indicate capacity
 problems, as this will prevent conforming clients from
 reconnecting automatically.

	Interoperability considerations:
	Rules for processing both conforming and non-conforming
 content are defined in this specification.

	Published specification:
	This document is the relevant specification.

	Applications that use this media type:
	Web browsers and tools using Web services.

	Additional information:
		Magic number(s):
	No sequence of bytes can uniquely identify an event
 stream.

	File extension(s):
	No specific file extensions are recommended for this
 type.

	Macintosh file type code(s):
	No specific Macintosh file type codes are
 recommended for this type.

	Person & email address to contact for further
 information:
	Ian Hickson (ian@hixie.ch)

	Intended usage:
	Common

	Restrictions on usage:
	This format is only expected to be used by dynamic
 open-ended streams served using HTTP or a similar protocol.
 Finite resources are not expected to be labeled with this
 type.

	Author:
	Ian Hickson <ian@hixie.ch>

	Change controller:
	W3C

Fragment identifiers have no meaning with text/event-stream
 resources.

11.2 Last-Event-ID

This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]
	Header field name:
	Last-Event-ID

	Applicable protocol:
	http

	Status:
	standard

	Author/Change controller:
	W3C

	Specification document(s):
	This document is the relevant specification.

	Related information:
	None.

References

All references are normative unless marked “Non-normative”.
	[ABNF]
	Augmented BNF for
 Syntax Specifications: ABNF, D. Crocker, P. Overell.
 IETF.

	[CORS]
	Cross-Origin Resource
 Sharing, A. van Kesteren. W3C.

	[DOMCORE]
	DOM4, A. van Kesteren.
 W3C.

	[HTML]
	HTML5,
 I. Hickson. W3C.

	[RFC2119]
	Key words for use in RFCs
 to Indicate Requirement Levels, S. Bradner. IETF.

	[RFC3629]
	UTF-8, a transformation
 format of ISO 10646, F. Yergeau. IETF.

	[RFC3864]
	Registration Procedures
 for Message Header Fields, G. Klyne, M. Nottingham, J.
 Mogul. IETF.

	[WEBIDL]
	Web IDL, C.
 McCormack. W3C.

	[WEBWORKERS]
	Web Workers, I.
 Hickson. W3C.

	[WEBMESSAGING]
	Web Messaging, I.
 Hickson. W3C.

Acknowledgements

For a full list of acknowledgements, please see the HTML
 specification. [HTML]

Appendix B. Refactor: JavaScript Globals, Objects,
 and Closures

You know globals are wrong, don’t you? The prim and proper computer science types
 tell us that. But they just make life so much easier! No messing about
 passing long parameter lists (or refactoring long parameter lists into a
 single object parameter, which then doubles the length of the body code to
 use). No worrying about scope: they are just there (well, in JavaScript and
 many languages they are; in PHP you have to either use the
 globals keyword to declare which globals to use, or use the
 $_GLOBALS[] superglobal). When you need to modify them, no
 worrying about having to return values or reference parameters. So what were
 the good reasons for not using globals? Testing. Yawn. Encapsulation. Side
 effects. Blah, blah, blah.
But, in the context of data push applications, there is one situation
 where globals are going to trip us up: when you need to make two or more
 connections.
Note
This appendix just talks about refactoring the JavaScript to not
 use globals. It is an appendix because it shows general-purpose
 JavaScript techniques: there is nothing specifically about data push
 here (except the example code, of course). Basically, it is an appendix
 because it got a bit too big for a sidebar in the main text!

Introducing the Example

I will use a stripped-down SSE example. This code won’t have
 interesting data, and it won’t have the fallback code for the older
 browsers. None of that affects the decision of which approach is better,
 it just adds more lines of code.
First, the backend:
<?php
header("Content-Type: text/event-stream");

function sendData($data){
echo "data:";
echo json_encode($data)."\n";
echo "\n"; //Extra blank line
@flush();@ob_flush();
}

//--------------------------------------
while(true){
 switch(rand(1,10)){
 case 1:
 sendData(array("comeBackIn10s" => true));
 exit;
 case 2:
 sendData(array("msg" => "About to sleep 10s"));
 sleep(10); //Force a keep-alive timeout
 break;
 default:
 sendData(array("t" => date("Y-m-d H:i:s")));
 sleep(1);
 break;
 }
 }
The while(true)switch(rand(1,10)){...} idiom means loop
 forever and choose what to do on each loop randomly. Eighty percent of the
 time it will end up in the default: clause, and just send
 back a datestamp. You’ve seen code like this back in the very first
 examples in Chapter 2, so I won’t explain it or the
 sendData() function again.
Of more interest is that 10 percent of the time (case
 2:) it will go to sleep for 10 seconds. This is to simulate a dead
 connection: 10 seconds is enough because I will be setting the keep-alive
 timeout in the JavaScript to just 5 seconds. I also send back a message so
 we can see when this happens.
And what about case 1:? This sends back a special flag,
 and then dies. This represents the scheduled shutdown idea that we look at
 in Adding Scheduled Shutdowns/Reconnects. As the name of the flag
 suggests, we want the client to leave us alone for 10 seconds, then
 reconnect.
How does the frontend look? Like this:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>SSE: Basic With Sleep: Globals</title>
 </head>
 <body>
 <pre id="x">Initializing...</pre>
 <script>
 var url = "basic_with_sleep.php";
 var es = null;
 var keepaliveSecs = 5;
 var keepaliveTimer = null;

 function gotActivity(){
 if(keepaliveTimer != null)
 clearTimeout(keepaliveTimer);
 keepaliveTimer = setTimeout(
 connect, keepaliveSecs * 1000);
 }

 function connect(){
 document.getElementById("x").
 innerHTML += "\nIn connect";
 if(es)es.close();
 gotActivity();
 es = new EventSource(url);
 es.addEventListener("message",
 function(e){processOneLine(e.data);},
 false);
 }

 function processOneLine(s){
 gotActivity();
 document.getElementById("x").
 innerHTML += "\n" + s;
 var d = JSON.parse(s);

 if(d.comeBackIn10s){
 if(keepaliveTimer != null)
 clearTimeout(keepaliveTimer);
 if(es)es.close();
 setTimeout(connect,10*1000);
 }

 }

 setTimeout(connect,100);

 </script>
</body>
</html>
If you have read Chapter 5, you will recognize
 that the keepaliveSecs and keepaliveTimer
 globals and the gotActivity() function are working together
 to make sure the connection is always up. The connect()
 function does the job of both connect() and
 startEventSource() in most of the code examples in this book;
 this is just a simplification because there is no fallback handling.
 processOneLine() just outputs the raw JSON it is receiving.
 The second half of processOneLine() is where the
 comeBackIn10s message is handled (this is the inline
 equivalent of the temporarilyDisconnect() function introduced
 in Chapter 5).
If you are reading this before reading Chapters 3, 4, and 5, and it is causing
 your brow to crinkle, just relax about exactly what the code is doing. The
 important things that I want to point out here are:
	There are four globals (one is a parameter, the other three
 are worker variables).

	Each of the four functions uses at least a couple of those
 globals.

	connect() is being called from three different
 places:
	The initial global code call (actually after
 100ms)

	After a keep-alive timeout

	After a request to come back in 10 seconds

	When connect() is called, it closes the old
 connection before starting a new one. This is the sole reason that
 es (the EventSource object) is
 captured into a global.

Load basic_with_sleep.html into your browser and try
 it out. It will look something like this:
Initializing...
In connect
{"t":"2014-02-28 09:46:34"}
{"t":"2014-02-28 09:46:35"}
{"t":"2014-02-28 09:46:36"}
{"msg":"About to sleep 10s"}
In connect
{"t":"2014-02-28 09:46:42"}
{"comeBackIn10s":true}
In connect
{"t":"2014-02-28 09:46:53"}
{"t":"2014-02-28 09:46:54"}
.
.
.
When it goes to sleep we get no fresh data, so after 5
 seconds the keep-alive timer kicks in, closes the old connection, and
 starts a new one. So you see a 6-second gap. When it says come back in 10
 seconds, we shut down the connection, switch off the keep-alive timer, and
 politely obey with a 10-second nap, so there is an 11-second gap in the
 timestamps.

The Problem Is…

…two connections. Find basic_with_sleep.two.html in the book’s source
 code and try it out. I’m not showing the code here because it is too
 gruesome. I now have seven globals, and eight global functions. Making
 this code required a lot of concentration and still I got it wrong, and
 had to debug my typos in Firebug. OK, game, set, and match to the computer
 scientists. You were right. Globals are Bad.
Note
To be fair, the code in basic_with_sleep.two.html was a really
 crude, naive approach. A couple of helper functions that take
 parameters could made it look not so bad. (Like a wig and a
 Jenna-Louise Coleman mask on Frankenstein. But as you lean in for the
 kiss you realize something does not smell quite right…)

So, something has to be done. I am going to look at a couple of
 solutions that JavaScript offers, and compare them.

JavaScript Objects and Constructors

JavaScript is an object-oriented language. Or maybe it isn’t and just pretends to be. If you think
 arguing points like this is a Fun Thing To Do, do it on your own time, not
 now, not here. The example code looks a bit like an object, so how about
 making it into a JavaScript object? The four globals could be the member
 variables. The four functions would be the member functions.
One great resource on this subject is Secrets of the
 JavaScript Ninja by John Resig and Bear Bibeault (Manning,
 2012).
Let’s have a quick recap on JavaScript objects. But before that, a
 quick recap on JavaScript functions, and especially the this
 variable. Functions in JavaScript are first-class objects, which means
 they can be passed around, it is easy to define callbacks, and they can
 even have properties assigned on them. You already know you can pass
 parameters to functions. But there are also a couple of implicit
 parameters being passed. One is arguments, which is useful
 for variable-length parameter lists. The other is this. It is
 called the function context, and this is always set, even
 when the function is not part of a class. When a function is called
 normally, this is the global scope (equivalent to
 window in a browser). When a function is called as a method
 on an object, this is referring to the object. When a
 function is an DOM event handler, this will be the DOM object
 in question.
A function can also be invoked using the new keyword.
 You do this when the function is a constructor, but in JavaScript the
 constructor is also the equivalent of the class keyword in
 other languages: it doesn’t just do initialization tasks, it also
 describes what is in the object. So, inside a constructor,
 this refers to the newly created object. Here is an
 example:
function MyClass(constructorParam){
 var privateVariable = "hello";

 this.publicVariable = "world";

 var privateFunction = function(a,b){
 console.log(a + " " + b + constructorParam);
 };

 this.publicFunction = function(){
 privateFunction(
 privateVariable,
 this.publicVariable
);
 };
 }
And then you use it like this:
var x = new MyClass("!");
x.publicFunction();
(This will output “hello world!” to the console.)
Notice how both constructorParam and
 privateVariable act like globals, but they are only visible
 within the public and private member functions of MyClass.
 Perfect.

The Code with Objects

So, to make an object we just need to wrap all the code in a
 constructor function, then put this. in front of everything?
 Here is what it looks like:
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>SSE: Basic With Sleep: OOP (doesn't work)</title>
</head>
<body>
<pre id="x">Initializing...</pre>
<script>
function SSE(url,domId){
this.es = null;
this.keepaliveSecs = 5;
this.keepaliveTimer = null;

this.gotActivity = function(){
if(this.keepaliveTimer != null)
 clearTimeout(this.keepaliveTimer);
this.keepaliveTimer = setTimeout(
 this.connect, this.keepaliveSecs * 1000);
};

this.connect = function(){
document.getElementById(domId).
 innerHTML += "\nIn connect";
if(this.es)this.es.close();
this.es = new EventSource(url);
this.es.addEventListener('message',
 function(e){this.processOneLine(e.data);},
 false);
this.gotActivity();
};

this.processOneLine = function(s){
this.gotActivity();
document.getElementById(domId).
 innerHTML += "\n" + s;
var d = JSON.parse(s);

if(d.comeBackIn10s){
 if(this.keepaliveTimer != null)
 clearTimeout(this.keepaliveTimer);
 if(this.es)this.es.close();
 setTimeout(this.connect,10*1000);
 }
};

this.connect();
}

setTimeout(function(){new SSE("basic_with_sleep.php", "x");},100);

</script>
</body>
</html>
Save it as basic_with_sleep.oop1.html and try it in the
 browser. Hhhmmmm…nothing happens. Firebug tells me the error is
 “TypeError: this.processOneLine is not a function.” Oh, yes it is.
 Whatever does the browser think this.processOneLine =
 function(s){...} means?! It cannot be any more function-like than
 that. Must be a browser bug.
No. The problem is that this means something different
 at that line. It is the “message” event handler of
 the EventSource object. So in that event handler
 this is referring not to our object, but to the
 EventSource object.
Maybe we could do something clever by moving
 processOneLine on to es. Then it will be found.
 But then all the references to this in
 processOneLine will not work. No, this is the wrong tree to
 be barking up. There is an easier way. At the top of the constructor, make
 a reference to this in a private variable called
 self:
function SSE(url,domId){
var self = this;
...
The only other change that is needed is to change
 this. to self. in the “message” event handler.
 Nowhere else, just there.
Note
In fact, you could change all references to this to
 self in the whole class. You could even argue it is neater
 and tidier and therefore better.

this.es.addEventListener('message',
 function(e){self.processOneLine(e.data);},
 false);
basic_with_sleep.oop2.html does this, and if
 you try it you will see that this simple change got it working. Yeah!
 Object-oriented JavaScript to save the day. Computer scientists take a bow
 and then write a recursive function to pat each other on the back.
But I’m not done. Aren’t you curious why the self trick
 worked? Aren’t you curious why url and domId
 could be seen inside all our functions without our having to pass them
 around explicitly?

JavaScript Closures

The reason this works is closures. You can get a lot done with JavaScript without
 understanding closures, but understanding them gives you so much more
 power. Basically, closures mean that each time you create a function, it
 is given references to all the variables that were in scope at the time.
 I’m not going to go into any more detail; see Secrets of the
 JavaScript Ninja by John Resig and Bear Bibeault (Manning, 2012) for an in-depth explanation.
What it means for us is that when we define a variable using
 var in the constructor, it will be available automatically in
 every function we then go on to define. And, as the self
 example from the previous section shows, they will also be available
 inside functions we define inside the functions we define.[43]
It turns out we dived in, like a bull in a china shop, slapping
 this. in front of everything, when there was an easier way.
 Let’s go back to the original code, with its four global variables and
 four global functions. url is the parameter so remove that,
 but just in front of the other three globals add the constructor
 definition, and at the end close the constructor, and call
 connect():
function SSE(url){
var es = null;
var keepaliveSecs = 5;
var keepaliveTimer = null;
.
. (functions, untouched)
.
connect();
}
Get things started by creating an instance:
setTimeout(function(){
 new SSE("basic_with_sleep.php");
 }, 100);
If you try this out in your browser…it simply works. (See basic_with_sleep.oop3.html in the book’s source
 code.) All that prefixing this. on either the member
 variables or the functions was not needed. The self alias was
 not needed.
The takeaway lesson: when you have a set of global variables, and a
 set of functions that operate on them, and only a single entry point from
 outside of those functions, wrap the whole lot in a constructor function,
 call the entry point from the end of the constructor, and you’re done. (If
 you have other access points from the outside, go ahead and add public
 functions, using this.XXX = function(){...}, just for
 them.)

Tea for Two, and Two for Tea

To use the new constructor to run two connections, and have them
 update side by side, there are just a few quick changes. Add a separate
 DOM entry (id="y") for them. Add a domId
 parameter to the constructor. And, finally, instantiate a second object
 (our code here uses a second timeout that starts a couple of seconds after
 the first one).
The full code (basic_with_sleep.oop3.two.html) is shown
 here:
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>SSE: Basic With Sleep: Simple OOP and Two Instances</title>
 <style>
 pre {float:left;margin:10px;}
 </style>
 </head>
 <body>
 <pre id="x">Initializing X...</pre>
 <pre id="y">Initializing Y...</pre>

 <script>
 function SSE(url,domId){
 var es = null;
 var keepaliveSecs = 5;
 var keepaliveTimer = null;

 function gotActivity(){
 if(keepaliveTimer != null)
 clearTimeout(keepaliveTimer);
 keepaliveTimer = setTimeout(
 connect, keepaliveSecs * 1000);
 }

 function connect(){
 document.getElementById(domId).
 innerHTML += "\nIn connect";
 if(es)es.close();
 gotActivity();
 es = new EventSource(url);
 es.addEventListener("message",
 function(e){processOneLine(e.data);},
 false);
 }

 function processOneLine(s){
 gotActivity();
 document.getElementById(domId).
 innerHTML += "\n" + s;
 var d = JSON.parse(s);

 if(d.comeBackIn10s){
 if(keepaliveTimer != null)
 clearTimeout(keepaliveTimer);
 if(es)es.close();
 setTimeout(connect,10*1000);
 }

 }

 connect();

 }

 setTimeout(function(){
 new SSE("basic_with_sleep.php","x");
 }, 100);
 setTimeout(function(){
 new SSE("basic_with_sleep.php","y");
 }, 2000);

 </script>
 </body>
</html>
Note
Bear in mind that modern browsers generally allow a limit of six
 connections to any single domain. (And those six have to include
 requests for images, etc., as well as Ajax requests.) So if you try
 adding lots of SSE objects to the preceding test page, you will only
 see the first six get any updates.
But, also, don’t do this. Wherever possible use one SSE
 connection to get all the messages. Use a JSON field to identify each
 type of message if they are meant for different parts of your
 application.
There are, however, no restrictions on simultaneous connections
 to different servers. That is when the code in this appendix becomes
 useful.

[43] Appreciating that all this stuff that is being passed around is
 weighing down your scripts is another reason to understand closures!
 The Function constructor, or the use of a function
 factory, are two ways to avoid closures.

Appendix C. PHP

PHP has been chosen as the principal language for the examples in this
 book, for various reasons. When combined with Apache, it allows the example
 code to be quite short, with very little scaffolding code needed. The syntax
 is straightforward and readable by anyone familiar with any mainstream
 programming language. And it fits the existing infrastructure
 advantage (see Comparison with WebSockets)
 of SSE very nicely, because a lot of people’s existing infrastructure is
 already built on top of PHP.
As I said, I have tried hard to make the PHP code readable by any
 programmer. This appendix explains those few features where something a bit
 more PHP-specific was used. Explanations link directly to the related
 section in this appendix, at the time the feature is used.
This appendix is not intended as a general introduction to PHP. There
 are countless books and websites that can do that for you. The PHP online documentation is an
 excellent starting point. If you are looking for a book in the context of
 dynamic websites, Robin Nixon’s Learning
 PHP, MySQL, JavaScript, and CSS (O’Reilly) looks
 comprehensive. Programming
 PHP, by Kevin Tatroe, Peter MacIntyre, and Rasmus Lerdorf (O’Reilly),
 focuses on just the PHP language, again in the context of dynamic web
 pages.
Classes in PHP

Classes in PHP (as of PHP5) are closer to the classes in C++, C#, and Java
 than the classes you find in JavaScript, but if you have used any
 object-oriented language before the code used in this book should be
 understandable.
Each element of the class is prefixed with an access modifier:
 public or private. Functions are then preceded
 with the keyword function, and items without the
 function prefix are member variables. The constructor is a
 function that is run at the time the object is created, and is called
 __construct(). So fxpair.seconds.php
 uses encapsulation to have a number of private variables, a
 constructor to initialize those variables, and then a single public
 function to do something with a mix of those private variables and the
 function parameters it is given.
Member variables (and member functions) are accessed by prefixing
 with $this->. This is similar to JavaScript, which uses
 this. as a prefix. In other OOP languages, such as C++, the
 use of this. is considered optional (though some style guides
 suggest it).
For more information on OOP in PHP, please see the manual at http://php.net/class.

Random Functions

PHP has functions called rand and mt_rand—how to choose between
 them? We use mt_rand. The MT stands for Mersenne Twister, and
 gives us better-quality random numbers. (Some places also claim it is
 notably faster, others that rand and mt_rand are
 about the same speed; this appears to depend on your operating system and
 PHP version.)
Use mt_srand to set the random seed for
 mt_rand. Setting the same random seed each time allows you to
 get the same sequence of “random” numbers every time. This is wonderful
 for repeatable testing. If you want different random numbers each time,
 there is no particular need to call mt_srand because PHP will
 initialize the seed for you (based on the current server clock).

Superglobals

PHP has some superglobals, which are available in all functions, and give you
 ready-parsed information about the request, as well about the machine
 environment. They are all associative arrays. $_GET is the HTTP GET data, $_POST
 is the HTTP POST data, and $_COOKIES is…well, you guessed it.
 $_SERVER will tell you other information about the request, while
 $_ENV will tell you about the machine you are running on.
 $GLOBALS gives access to user-defined global variables.
There is also $_REQUEST, which is a combination of all of $_GET,
 $_POST, and $_COOKIES. Be aware that using
 $_REQUEST is usually discouraged, because there are security
 implications of cookie data overriding your form data. You should use
 $_REQUEST—and only use
 $_REQUEST—when the variable you are interested in could
 validly have come from any of GET, POST, or cookie data.
However, note that since PHP 5.3, the default
 php.ini file will exclude cookie data from
 $_REQUEST. See http://php.net/request_order.
 So, you now have to set request_order to “CGP” if you
 explicitly want to allow cookies to be included in $_REQUEST.
 By putting “C” first, POST gets priority over GET, which gets priority
 over cookie data.

Date Handling

PHP has some powerful functions for dealing with times and dates.
 time returns the time in seconds since 1970; we have seen it
 before. Another couple we have seen before are date() and
 gmdate(), which turn Unix time into a string for local and
 GMT time zones, respectively. They come with more format options than you
 can shake a stick at—take a look at http://php.net/date.
If I had to name a single PHP function I miss more than any other
 when using other languages, it is strtotime(). This takes a date in string
 form and returns it in Unix time (seconds since January 1, 1970). Of
 course it deals with standard timestamp formats, such as “2013-12-25
 13:25:50,” as well as dealing with the month in words, e.g., “25th
 December 2013.” But it gets better! You can also give date offsets, so you
 can write strtotime("+1 day") to get the timestamp for 24
 hours from now. You can write “last day of February.” And you can write
 “next month,” “last Thursday,” etc.
By default, the calculations are relative to the current time. But
 by specifying the second parameter you can have it relative to any other
 time. And that second parameter could be using strtotime too!
 Here is an example that finds the last Friday before Christmas in the year
 2001:
$friday = strtotime("last Friday",
 strtotime("2001-12-25"));
echo date("Y-m-d",$friday);
//2001-12-21

Passwords

User passwords should obviously not be stored in a database as plain text. Though
 better than nothing, encryption is also usually a bad idea—if the key is
 stolen, all the passwords can be recovered. Instead of encryption you
 should be hashing your passwords. Hashing is a
 one-way process: it takes the plain-text password, and applies a number of
 mathematical operations to it to give some random-looking string. You
 cannot reverse the operation, and there is no key to be stolen. But given
 the same plain-text password, you will always get the same hashed password
 out of the algorithm.
However, with rogues and rogue governments building faster and
 faster computers to hack you, your grandfather’s password hashing
 algorithms are no longer good enough. It used to be that
 md5() was enough, and if you used salt
 with it you could hold your head high in the nerdiest of company. But no
 longer.
As of PHP 5.5.0 the security best practice is to use
 password_hash() to make your passwords, and
 password_verify() to validate them. If you are using an
 earlier version of PHP, add the following code to the top of your
 script[44] (the if(!defined(...)){...} wrapper simply
 means this block will be ignored when the script is run on PHP 5.5 or
 later):
if (!defined("PASSWORD_DEFAULT")) {
function password_hash($password){
$salt = str_replace("+", ".", base64_encode(sha1(time(),true)));
$salt = substr($salt, 0, 22); //We want exactly 22 characters
if(PHP_VERSION_ID<50307)return crypt($password, '$2a10'.$salt);
else return crypt($password, '$2y10'.$salt);
}

function password_verify($password, $hash) {
return crypt($password,$hash) === $hash;
}

} //End of if (!defined('PASSWORD_DEFAULT'))
PHP 5.3.7 introduced a new, better hashing algorithm. The preceding
 code uses that when available; otherwise, it uses the previous best
 choice. The 10 in '$2y$10$' is a measure of how slow to be.
 In the weird world of password hashing, slow is good; 10 is the default as
 of PHP 5.5. It means password hashing might take a significant fraction of
 a CPU second. Read the PHP manual’s descriptions of these functions if you
 want to tweak these parameters. To be future-proof, use a
 VARCHAR(255) field for storing password hashes in an SQL
 database, though currently they will always be exactly 60 characters
 long.

Falling Asleep

There are two easily confused functions in PHP: sleep() and
 usleep(). The former takes an integer, the number of seconds
 to sleep. The latter also takes an integer, but as the number of
 microseconds to sleep. So, for example, sleep(2) and
 usleep(2000000) are identical; they both put the script to
 sleep for two seconds. However, if you want to sleep for 0.25 seconds, or
 1.5 seconds, your only choice is to use usleep
 (usleep(250000) and usleep(1500000),
 respectively).
This is a good time to mention max_execution_time (a
 configuration setting) and set_time_limit() (a function to allow resetting the
 max_execution_time). The special value of zero means “run
 forever,” and that is the default when you run scripts from the command
 line. However, through a web browser, the default is 30 seconds; with
 Linux/Mac, that is 30 seconds of CPU time, but with Windows it is measured
 as wall-clock time. For a streaming server, that 30 seconds will come
 quite quickly; you might not even notice unless you look at your browser
 console, but your SSE script will end up reconnecting to the backend every
 30 seconds. (Unless doing something compute-intensive, over on Linux you
 won’t notice it for tens of minutes or even hours.)
The fix is simple—at the very top of your script add this
 line:
set_time_limit(0);

[44] For a more comprehensive version of the PHP 5.5 functions, see
 https://github.com/ircmaxell/password_compat.

Index

Symbols
	? (question mark), Refactoring the JavaScript
	
	@ (at sign), Minimal Example: The Backend
	

A
	about:config Mozilla feature, Persistent Storage
	
	access control, Fine Access Control–Fine Access Control
	
	Access-Control-Allow-Credentials, withCredentials
	
	Access-Control-Allow-Headers, HEAD and OPTIONS
	
	Access-Control-Allow-Origin, Allow-Origin, Constructors and Credentials
	
	ActiveXObject, Sending Last-Event-ID
	
	Ajax, Data Push, Show Me Some Code!
		readyState, Fallbacks: There Has to Be a Better Way!
	

	Allow header, HEAD and OPTIONS
	
	Apache servers
		authorization with, Authorization (with Apache)–Authorization (with Apache)
	
	data compression and, The Easy Way to Lose Weight
	

	application example, Potential Applications
		(see also production-quality applications)
	
	about, Potential Applications
	
	adding history store, Adding a History Store–Adding a History Store
	
	allowing for passage of time, Making Allowance for the Real Passage of Time
	
	backend, Minimal Example: The Backend–Now to Get It Working in a Browser!, The Backend–The Backend
	
	controlling randomness, Taking Control of the Randomness–Taking Control of the Randomness
	
	frontend, Minimal Example: The Frontend–Using JQuery?, The Frontend
	
	grafting long-poll onto, Grafting Long-Poll onto Our FX Application–IE7 and Earlier
	
	grafting XHR/iframe onto, Grafting XHR/Iframe onto Our FX Application–Wiring Up Iframe
	
	optimization possibilities, Persistent Storage
	
	persistent storage, Persistent Storage–Persistent Storage
	
	problem domain, Our Problem Domain–Our Problem Domain
	
	putting it together, Putting It All Together–Putting It All Together
	
	realistic, repeatable, random data, Realistic, Repeatable, Random Data–Realistic, Repeatable, Random Data
	
	reducing size of data, Persistent Storage
	
	refactoring JavaScript, Refactoring the JavaScript–Refactoring the JavaScript
	
	refactoring PHP script, Refactoring the PHP
	
	structuring data, More Structure in Our Data–More Structure in Our Data
	
	timestamps, Fine-Grained Timestamps–Fine-Grained Timestamps
	
	usage summary, Putting the FX Baby to Bed
	

	at sign (@), Minimal Example: The Backend
	
	authentication, multiple choices, Multiple Authentication Choices–Multiple Authentication Choices
	
	authorization
		Access-Control-Allow-Origin, Allow-Origin
	
	with Apache, Authorization (with Apache)–Authorization (with Apache)
	
	browsers and CORS, Chrome and Safari and CORS
	
	constructors and credentials, Constructors and Credentials–withCredentials
	
	cookies, Cookies–Cookies
	
	CORS and, SSL and CORS (Connecting to Other Servers)–SSL and CORS (Connecting to Other Servers), CORS and Fallbacks–Handling IE9 and Earlier Dynamically
	
	fine access control, Fine Access Control–Fine Access Control
	
	HTTP HEAD, HEAD and OPTIONS
	
	HTTP OPTIONS, HEAD and OPTIONS
	
	HTTP POST with SSE, HTTP POST with SSE–HTTP POST with SSE
	
	multiple authentication choices, Multiple Authentication Choices–Multiple Authentication Choices
	
	putting example together, Putting It All Together–Putting It All Together
	

B
	backend
		allowing for passage of time, Making Allowance for the Real Passage of Time
	
	application example, Minimal Example: The Backend–Now to Get It Working in a Browser!, The Backend–The Backend
	
	controlling randomness, Taking Control of the Randomness–Taking Control of the Randomness
	
	Node.js example, The Backend in Node.js–Now to Get It Working in a Browser!
	
	putting example together, Putting It All Together–Putting It All Together
	
	XHR technique on, XHR on the Backend
	

	Berners-Lee, Tim, HTML5
	
	Bibeault, Bear, JavaScript Closures
	
	binary data versus binary files, Comparison with WebSockets
	
	binary protocols, The Backend
	
	browsers, Browser Wars
		(see also specific browsers)
	
	browser wars, Browser Wars
	
	CORS and, SSL and CORS (Connecting to Other Servers), Chrome and Safari and CORS
	
	long-polling considerations, IE8 and Earlier
	

C
	cache prevention, Cache Prevention
	
	callbacks (JavaScript), Minimal Example: The Frontend
	
	Can I Use website, All About SSE...And Then Some
	
	chat applications, Potential Applications
	
	Chrome browser
		browser wars and, Browser Wars
	
	CORS and, SSL and CORS (Connecting to Other Servers), Chrome and Safari and CORS
	
	data pushing fallback, Fallbacks: There Has to Be a Better Way!
	
	iframe technique and, iframe
	
	keep-alives and, Client Side
	
	killing connections, Minimal Example: The Backend
	
	retry delay and, SSE Retry
	
	self-signed SSL certificates and, Chrome and Safari and CORS
	
	SSE and, Super Simple Easy SSE, A Delightfully Realistic Data Push
 Application
	
	Web Storage and, Persistent Storage
	
	WebSockets and, Comparison with WebSockets
	
	XHR technique and, iframe, Chrome and Safari and CORS
	

	classes (PHP), Classes in PHP
	
	closures (JavaScript), JavaScript Closures
	
	constructors
		credentials and, Constructors and Credentials–withCredentials
	
	objects and, JavaScript Objects and Constructors–The Code with Objects
	

	Content-Type header, The Backend, Cache Prevention, Server Side
	
	cookies, Cookies–Cookies, withCredentials
	
	$_COOKIES superglobal, Superglobals
	
	CORS (Cross-Origin Resource Sharing)
		about, SSL and CORS (Connecting to Other Servers)–SSL and CORS (Connecting to Other Servers)
	
	browsers and, SSL and CORS (Connecting to Other Servers), Chrome and Safari and CORS
	
	fallbacks and, CORS and Fallbacks–Handling IE9 and Earlier Dynamically
	
	preflight requests, HEAD and OPTIONS
	
	testing, Allow-Origin
	

	credentials, constructors and, Constructors and Credentials–withCredentials
	
	CSS, HTML5
	

D
	data compression, Persistent Storage, The Easy Way to Lose Weight
	
	data pull technology, Data Push–Data Push, Decisions, Decisions…–Decisions, Decisions…
	
	data push technology
		about, Data Push–Data Push
	
	alternative names for, Other Names for Data Push
	
	Node.js example, Pushing SSE in Node.js–Pushing SSE in Node.js
	
	questions to ask before using, Decisions, Decisions…–Decisions, Decisions…
	
	socket connections and, When Data Push Is the Wrong Choice–When Data Push Is the Wrong Choice
	

	date handling (PHP), Adding Scheduled Shutdowns/Reconnects, Date Handling
	
	date_default_timezone_set function (PHP), Adding Scheduled Shutdowns/Reconnects
	
	DEFLATE output filter, The Easy Way to Lose Weight
	
	deflate.conf file, The Easy Way to Lose Weight
	
	Dirty Data Defense, Dealing with Data
	
	Document Object Model (DOM), Data Push
	
	DOM (Document Object Model), Data Push
	

E
	echo command, Refactoring the PHP, Commonalities
	
	$_ENV superglobal, Superglobals
	
	error handling, Error Handling, Long-Poll and Connection Errors
	
	error suppression (PHP), Minimal Example: The Backend
	
	event handlers
		about, Minimal Example: The Frontend
	
	creating for events, Event
	
	error messages and, Error Handling
	

	events (SSE), Event–Event, 6 Parsing an event stream
	
	EventSource object
		about, Other Names for Data Push, 4 The EventSource interface
	
	CORS and, SSL and CORS (Connecting to Other Servers)
	
	frontend example, Minimal Example: The Frontend
	
	garbage collection, 10 Garbage collection
	
	self-signed SSL certificates and, SSL and CORS (Connecting to Other Servers)
	
	withCredentials option, Constructors and Credentials–withCredentials
	

	exclusive variables, Connecting
	

F
	fallbacks
		Ajax readyState, Show Me Some Code!, Fallbacks: There Has to Be a Better Way!
	
	browser wars, Browser Wars
	
	byte comparison of various, The Backend
	
	CORS and, CORS and Fallbacks–Handling IE9 and Earlier Dynamically
	
	data pushing alternatives, Fallbacks: Data Push for Everyone Else–The Long and Winding Poll
	
	long-polling, What Is Polling?–IE7 and Earlier
	
	polyfill, Adding a History Store
	
	refactoring JavaScript example, Refactoring the JavaScript–Refactoring the JavaScript
	
	WebSocket, Comparison with WebSockets
	

	Firefox browser
		cookies and, withCredentials
	
	CORS and, SSL and CORS (Connecting to Other Servers)
	
	data pushing fallback, Fallbacks: There Has to Be a Better Way!
	
	data storage and, Persistent Storage
	
	iframe technique and, iframe
	
	keep-alives and, Client Side
	
	minimum reconnect time, SSE Retry
	
	retry delay and, SSE Retry, SSE Retry
	
	SSE and, Super Simple Easy SSE, A Delightfully Realistic Data Push
 Application
	
	Web Storage and, Persistent Storage
	
	WebSockets and, Comparison with WebSockets
	
	XHR technique and, iframe
	

	Flash Remoting technology, Other Names for Data Push
	
	foreign exchange (FX) prices (see application example)
	
	frontend
		application example, Minimal Example: The Frontend–Minimal Example: The Frontend, The Frontend
	
	iframe technique on, Iframe on the Frontend
	
	JQuery example, Using JQuery?
	
	XHR technique on, XHR on the Frontend
	

	FX (foreign exchange) prices (see application example)
	

G
	garbage collection, 10 Garbage collection
	
	$_GET superglobal, Superglobals
	
	global variables, Don’t Act Globally, Think Locally, Refactor: JavaScript Globals, Objects,
 and Closures, Superglobals
	
	$_GLOBALS superglobal, Superglobals
	
	gmdate function (PHP), Fine-Grained Timestamps
	
	Grigorik, Ilya, Comparison with WebSockets, Decisions, Decisions…
	
	gzip_min_length directive, The Easy Way to Lose Weight
	

H
	HEAD request method (HTTP), HEAD and OPTIONS
	
	<head> tag, Minimal Example: The Frontend
	
	headers (SSE), Headers–Headers, Headers Again
	
	history store, adding to example, Adding a History Store–Adding a History Store
	
	.htaccess file, Authorization (with Apache), Multiple Authentication Choices
	
	HTML5 standard, HTML5, Persistent Storage–Persistent Storage
	
	htpasswd program, Authorization (with Apache)
	
	HTTP
		HEAD request method, HEAD and OPTIONS
	
	OPTIONS method, HEAD and OPTIONS
	
	persistent connection, When Data Push Is the Wrong Choice
	
	POST request method, HTTP POST with SSE–HTTP POST with SSE
	

	http library, Minimal Web Server in Node.js
	

I
	iframe technique
		about, iframe–iframe
	
	browsers and, iframe
	
	on frontend, Iframe on the Frontend
	
	grafting onto applications, Grafting XHR/Iframe onto Our FX Application–Wiring Up Iframe
	
	memory management, Thanks for the Memories
	
	wiring up, Wiring Up Iframe–Wiring Up Iframe
	

	Internet Explorer browser
		browser wars and, Browser Wars
	
	CORS and, CORS and IE9 and Earlier–Handling IE9 and Earlier Dynamically
	
	data pushing fallback, Fallbacks: There Has to Be a Better Way!
	
	iframe technique and, iframe, Wiring Up Iframe
	
	long-polling considerations, IE8 and Earlier
	
	Msxml2.XMLHTTP object, Show Me Some Code!
	
	SSE and, Super Simple Easy SSE
	
	Web Storage and, Persistent Storage
	
	WebSockets and, Comparison with WebSockets
	
	XHR technique and, iframe
	

J
	JavaScript
		about, HTML5
	
	accessing iframes, iframe
	
	adding history store, Adding a History Store–Adding a History Store
	
	callbacks, Minimal Example: The Frontend
	
	closures, JavaScript Closures
	
	data push technology and, Data Push
	
	EventSource object, Other Names for Data Push, Minimal Example: The Frontend
	
	fallbacks for disabled, What If JavaScript Is Disabled?
	
	frontend example, Minimal Example: The Frontend, The Frontend
	
	JQuery versus, Minimal Example: The Frontend
	
	objects and constructors, JavaScript Objects and Constructors–The Code with Objects
	
	refactoring example, Refactoring the JavaScript–Refactoring the JavaScript
	
	SSE and, All About SSE...And Then Some
	

	JQuery, Minimal Example: The Frontend, Using JQuery?
	
	JSON
		badly formatted, Bad JSON
	
	compressing strings, Persistent Storage
	
	converting data to strings, Persistent Storage
	
	protocol overhead, The Backend
	
	refactoring example, Refactoring the JavaScript
	

K
	keep-alives
		about, Adding Keep-Alive
	
	client-side considerations, Client Side–Client Side
	
	long-polling and, Long-Poll and Keep-Alive–Long-Poll and Keep-Alive
	
	server-side considerations, Server Side
	
	SSE retry mechanism, SSE Retry–SSE Retry
	
	usage suggestions, Client Side
	

L
	Last-Event-ID header
		about, 11.2 Last-Event-ID
	
	in Node.js, Using Last-Event-ID
	
	passing ID at reconnection time, Passing the ID at Reconnection Time–Passing the ID at Reconnection Time
	
	sending, Sending Last-Event-ID–Sending Last-Event-ID
	
	timestamps in, ID for Multiple Feeds
	
	usage suggestions, Using Last-Event-ID–Using Last-Event-ID
	

	Lerdorf, Rasmus, PHP
	
	LocalStorage object, Sending Last-Event-ID
	
	long-polling
		about, How Does Long-Polling Work?–How Does Long-Polling Work?
	
	code example, Show Me Some Code!
	
	connection errors and, Long-Poll and Connection Errors
	
	dealing with data, Dealing with Data
	
	disabled JavaScript and, What If JavaScript Is Disabled?
	
	grafting onto applications, Grafting Long-Poll onto Our FX Application–IE7 and Earlier
	
	Internet Explorer and, IE8/IE9: Always Use Long-Poll
	
	keep-alives and, Long-Poll and Keep-Alive–Long-Poll and Keep-Alive
	
	optimizing, Optimizing Long-Poll
	
	server-side considerations, Server Side–Server Side
	

	lossless compression, Persistent Storage
	
	lossy compression, Persistent Storage
	

M
	MacIntyre, Peter, PHP
	
	memory management, Thanks for the Memories
	
	message event, Event
	
	Meszaros, Gerard, Realistic, Repeatable, Random Data
	
	minimal web server (Node.js), Minimal Web Server in Node.js
	
	Msxml2.XMLHTTP object, Show Me Some Code!
	
	mt_rand function (PHP), Taking Control of the Randomness, Random Functions
	
	multiline data (SSE), Multiline Data–Multiline Data
	
	multiplexing, The Backend
	

N
	nginx servers, The Easy Way to Lose Weight
	
	Nixon, Robin, PHP
	
	no-updates concept, Data Push–Data Push
	
	Node.js
		backend example, The Backend in Node.js–Now to Get It Working in a Browser!
	
	Last-Event-ID header in, Using Last-Event-ID
	
	minimal web server, Minimal Web Server in Node.js
	
	pushing SSE, Pushing SSE in Node.js–Pushing SSE in Node.js
	

O
	Object.keys method, Adding a History Store, IE8 and Earlier
	
	objects and constructors, JavaScript Objects and Constructors–The Code with Objects
	
	Opera browser
		data pushing fallback, Fallbacks: There Has to Be a Better Way!
	
	data storage and, Persistent Storage
	
	SSE and, Super Simple Easy SSE, A Delightfully Realistic Data Push
 Application
	
	Web Storage and, Persistent Storage
	

	OPTIONS method (HTTP), HEAD and OPTIONS
	

P
	Parameter Injection pattern, The Backend
	
	passwords (PHP), Passwords
	
	persistent connection, When Data Push Is the Wrong Choice
	
	persistent storage, Persistent Storage–Persistent Storage
	
	PHP
		about, PHP
	
	backend example, Minimal Example: The Backend–Minimal Example: The Backend
	
	classes in, Classes in PHP
	
	date handling, Adding Scheduled Shutdowns/Reconnects, Date Handling
	
	error suppression, Minimal Example: The Backend
	
	hardcoded passwords, HTTP POST with SSE
	
	passwords, Passwords
	
	preventing script death, Death Prevention
	
	random functions, Random Functions
	
	refactoring script, Refactoring the PHP
	
	sleep functions, Realistic, Repeatable, Random Data, Falling Asleep
	
	superglobals, Superglobals
	

	polling, What Is Polling?
		(see also long-polling)
	

	POST request method (HTTP), HTTP POST with SSE–HTTP POST with SSE
	
	$_POST superglobal, Superglobals
	
	<pre> tag, Minimal Example: The Frontend
	
	preflight requests (CORS), HEAD and OPTIONS
	
	production-quality applications
		adding keep-alive, Adding Keep-Alive–SSE Retry
	
	adding scheduled shutdowns and reconnects, Adding Scheduled Shutdowns/Reconnects–Adding Scheduled Shutdowns/Reconnects
	
	badly formatted JSON, Bad JSON
	
	cache prevention, Cache Prevention
	
	data compression, The Easy Way to Lose Weight
	
	death prevention, Death Prevention
	
	error handling, Error Handling
	
	Last-Event-ID header, Sending Last-Event-ID–Passing the ID at Reconnection Time
	
	thinking locally, Don’t Act Globally, Think Locally
	

Q
	question mark (?), Refactoring the JavaScript
	
	QUOTA_EXCEEDED_ERR exception, Persistent Storage
	

R
	rand function (PHP), Random Functions
	
	random seed
		about, The Backend
	
	allowing for passage of time, Making Allowance for the Real Passage of Time
	
	controlling, Taking Control of the Randomness–Taking Control of the Randomness
	

	readyState (Ajax), Show Me Some Code!, Fallbacks: There Has to Be a Better Way!
	
	reconnects
		passing ID at, Passing the ID at Reconnection Time–Passing the ID at Reconnection Time
	
	scheduled, Adding Scheduled Shutdowns/Reconnects–Adding Scheduled Shutdowns/Reconnects
	

	regexes (regular expressions), Handling IE9 and Earlier Dynamically
	
	RegExp object, Handling IE9 and Earlier Dynamically
	
	$_REQUEST superglobal, Taking Control of the Randomness, Superglobals
	
	Resig, John, JavaScript Closures
	
	retry mechanism (SSE), SSE Retry–SSE Retry
	

S
	Safari browser
		CORS and, SSL and CORS (Connecting to Other Servers), Chrome and Safari and CORS
	
	data pushing fallback, Fallbacks: There Has to Be a Better Way!
	
	permanent loading animation, Refactoring the JavaScript
	
	retry delay and, SSE Retry
	
	setting 100ms delay, Show Me Some Code!
	
	SSE and, Super Simple Easy SSE, A Delightfully Realistic Data Push
 Application
	
	Web Storage and, Persistent Storage
	
	WebSockets and, Comparison with WebSockets
	
	XHR technique and, Chrome and Safari and CORS
	

	Same-Origin Policy, SSL and CORS (Connecting to Other Servers)
	
	scheduled shutdowns and reconnects, Adding Scheduled Shutdowns/Reconnects–Adding Scheduled Shutdowns/Reconnects
	
	<script> tag, Minimal Example: The Frontend, What If JavaScript Is Disabled?
	
	$_SERVER superglobal, Superglobals
	
	Server-Sent Events (see SSE)
	
	setInterval function, Pushing SSE in Node.js
	
	set_time_liimit function (PHP), Falling Asleep
	
	shutdowns, scheduled, Adding Scheduled Shutdowns/Reconnects–Adding Scheduled Shutdowns/Reconnects
	
	sleep function (PHP), Pushing SSE in Node.js, Realistic, Repeatable, Random Data, Falling Asleep
	
	SSE (Server-Sent Events)
		about, All About SSE...And Then Some
	
	backend example, Minimal Example: The Backend–Now to Get It Working in a Browser!
	
	CORS and, SSL and CORS (Connecting to Other Servers)–SSL and CORS (Connecting to Other Servers)
	
	data push technology, Data Push–Data Push
	
	events, Event–Event
	
	EventSource object, Other Names for Data Push, Minimal Example: The Frontend
	
	frontend example, Minimal Example: The Frontend–Using JQuery?
	
	headers, Headers–Headers, Headers Again
	
	HTTP POST method, HTTP POST with SSE–HTTP POST with SSE
	
	JavaScript and, All About SSE...And Then Some
	
	multiline data, Multiline Data–Multiline Data
	
	potential applications, Potential Applications
	
	protocol overhead, The Backend
	
	pushing in Node.js, Pushing SSE in Node.js–Pushing SSE in Node.js
	
	questions to ask before using, Decisions, Decisions…–Decisions, Decisions…
	
	testing recovery, SSE Retry
	
	W3C Candidate Recommendation, The SSE Standard
	
	WebSockets comparison, Comparison with WebSockets–Comparison with WebSockets
	
	whitespace in messages, Whitespace in Messages
	

	StatCounter GlobalStats, All About SSE...And Then Some
	
	storage, persistent, Persistent Storage–Persistent Storage
	
	strtotime function (PHP), Adding Scheduled Shutdowns/Reconnects, Date Handling
	
	sudo kill command, SSE Retry
	
	sudo service apache2 restart command, SSE Retry
	
	superglobals (PHP), Superglobals
	

T
	Tatroe, Kevin, PHP
	
	testing
		CORS, Allow-Origin
	
	SSE recovery, SSE Retry
	
	testability designs, The Backend
	

	text/event-stream MIME type, Minimal Example: The Backend, The Easy Way to Lose Weight, Commonalities, 6 Parsing an event stream
	
	text/html MIME type, Now to Get It Working in a Browser!
	
	text/plain MIME type, Commonalities, XHR on the Backend
	
	timestamps
		adding history store, Adding a History Store–Adding a History Store
	
	backend example, Minimal Example: The Backend, Pushing SSE in Node.js
	
	fine-grained, Fine-Grained Timestamps–Fine-Grained Timestamps
	
	frontend example, Minimal Example: The Frontend
	
	in Last-Event-ID
 header, ID for Multiple Feeds
	
	long-polling, Show Me Some Code!–Show Me Some Code!
	
	scheduled shutdowns and reconnects, Adding Scheduled Shutdowns/Reconnects
	
	structuring data, More Structure in Our Data
	
	usage suggestions, Server Side, Client Side
	

	tmp.log, Authorization (with Apache)
	

U
	URLs, comparing, Handling IE9 and Earlier Dynamically–Handling IE9 and Earlier Dynamically
	
	usleep function (PHP), Realistic, Repeatable, Random Data, Falling Asleep
	

W
	Web Storage, Persistent Storage
	
	WebSockets
		potential applications, Potential Applications
	
	questions to ask before using, Decisions, Decisions…–Decisions, Decisions…
	
	SSE comparison, Comparison with WebSockets–Comparison with WebSockets
	

	whitespace, Commonalities, Whitespace in Messages
	
	windows.postMessage method, iframe
	

X
	XDomainRequest, CORS and IE9 and Earlier
	
	XHR technique
		about, XHR–XHR
	
	on backend, XHR on the Backend
	
	browsers and, iframe, Chrome and Safari and CORS
	
	echo command and, Commonalities
	
	on frontend, XHR on the Frontend
	
	grafting onto applications, Grafting XHR/Iframe onto Our FX Application–Wiring Up Iframe
	
	memory management, Thanks for the Memories
	
	wiring up, Wiring Up XHR
	

	XMLHttpRequest object
		about, Decisions, Decisions…
	
	common status codes, Long-Poll and Connection Errors
	
	CORS and, SSL and CORS (Connecting to Other Servers)
	
	HTTP POST method and, HTTP POST with SSE
	
	Last-Event-ID header and, Sending Last-Event-ID
	

Colophon
The animal on the cover of Data Push Apps with HTML5
 SSE is a short-beaked echidna (Tachyglossus
 aculeatus). The four species of echidnas, along with the
 platypus, are the only mammals who lay eggs instead of giving birth to live
 young. The short-beaked echidna is found in forested areas of Australia
 (where it is the most widespread native mammal) and parts of New Guinea.

Short-beaked echidnas are 12–18 inches long, with brown fur and
 cream-colored spines (made of keratin) on their back. True to their name,
 their snouts are about 3 inches long, shorter than other echidna species.
 The leathery snout serves multiple purposes: its wedge shape is optimized to
 explore insect mounds, it has electroreceptors that help detect nearby prey,
 and its labyrinth-like bone structure is believed to help condense exhaled
 water vapor and cool the animal down (since echidnas do not have sweat
 glands).
Echidnas are sometimes called spiny anteaters, though this term has
 fallen out of use since they are not actually related to true anteaters.
 Their diet is indeed made up of insects, however—mostly ants and termites,
 which they catch by digging into the insects’ nests and capturing prey with
 their long sticky tongues. Echidnas are expert diggers, thanks to their
 specialized claws and strong short limbs. Apart from hunting prey, they also
 dig as a defense mechanism; if threatened, they will burrow very quickly
 into the ground and roll into a ball, leaving only their sharp spines
 exposed. They are also capable swimmers, which they do with only their nose
 above water, like a snorkel.
The short-beaked echidna appears on the reverse side of Australia’s
 5-cent coin, and has even made it into videogames, as the character Knuckles
 in the classic Sonic the Hedgehog series.
The cover image is from Wood’s Animate Creation.
 The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe
 Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is
 Dalton Maag’s Ubuntu Mono.

Data Push Apps with HTML5 SSE

Darren Cook

Editor
Simon St. Laurent

Editor
Allyson MacDonald

Editor
Kristen Brown

Editor
Kim Cofer

	Revision History
	2014-03-17	First release

Copyright © 2014 Darren Cook

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Data Push Apps
 with HTML5 SSE, the image of a short-beaked echidna, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-03-19T19:23:42Z

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/figs/dpah_0101.png
Client Server Actual Data
URL o

L ——e
S——
H

'
»

Wait for user to é Latency
reload the page -
HTML . —

T

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/figs/dpah_0501.png
(eap-alive:2014-01-08 06:36:08

OEBPS/bk01-toc.html
Data Push Apps with HTML5 SSE

Table of Contents
		Preface		The Kind of Person You Need to Be

		Organization of This Book

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		1. All About SSE...And Then Some		HTML5

		Data Push

		Other Names for Data Push

		Potential Applications

		Comparison with WebSockets

		When Data Push Is the Wrong Choice

		Decisions, Decisions…

		Take Me to Your Code!

		2. Super Simple Easy SSE		Minimal Example: The Frontend

		Using JQuery?

		Minimal Example: The Backend

		The Backend in Node.js		Minimal Web Server in Node.js

		Pushing SSE in Node.js

		Now to Get It Working in a Browser!

		Smart, Sassy Exit

		3. A Delightfully Realistic Data Push
 Application		Our Problem Domain

		The Backend

		The Frontend

		Realistic, Repeatable, Random Data

		Fine-Grained Timestamps

		Taking Control of the Randomness

		Making Allowance for the Real Passage of Time

		Taking Stock

		4. Living in More Than the Present Moment		More Structure in Our Data

		Refactoring the PHP

		Refactoring the JavaScript

		Adding a History Store

		Persistent Storage

		Now We Are Historians…

		5. No More Ivory Tower: Making Our Application
 Production-Quality		Error Handling

		Bad JSON

		Adding Keep-Alive		Server Side

		Client Side

		SSE Retry

		Adding Scheduled Shutdowns/Reconnects

		Sending Last-Event-ID

		ID for Multiple Feeds

		Using Last-Event-ID

		Passing the ID at Reconnection Time

		Don’t Act Globally, Think Locally

		Cache Prevention

		Death Prevention

		The Easy Way to Lose Weight

		Looking Back

		6. Fallbacks: Data Push for Everyone Else		Browser Wars

		What Is Polling?

		How Does Long-Polling Work?

		Show Me Some Code!

		Optimizing Long-Poll

		What If JavaScript Is Disabled?

		Grafting Long-Poll onto Our FX Application		Connecting

		Long-Poll and Keep-Alive

		Long-Poll and Connection Errors

		Server Side

		Dealing with Data

		Wire It Up!

		IE8 and Earlier

		IE7 and Earlier

		The Long and Winding Poll

		7. Fallbacks: There Has to Be a Better Way!		Commonalities

		XHR

		iframe

		Grafting XHR/Iframe onto Our FX Application		XHR on the Backend

		XHR on the Frontend

		Iframe on the Frontend

		Wiring Up XHR

		Wiring Up Iframe

		Thanks for the Memories

		Putting the FX Baby to Bed

		8. More SSE: The Rest of the Standard		Headers

		Event

		Multiline Data

		Whitespace in Messages

		Headers Again

		So Is That Everything?

		9. Authorization: Who’s That Knocking at My
 Door?		Cookies

		Authorization (with Apache)

		HTTP POST with SSE

		Multiple Authentication Choices

		SSL and CORS (Connecting to Other Servers)

		Allow-Origin

		Fine Access Control

		HEAD and OPTIONS

		Chrome and Safari and CORS

		Constructors and Credentials

		withCredentials

		CORS and Fallbacks		CORS and IE9 and Earlier

		IE8/IE9: Always Use Long-Poll

		Handling IE9 and Earlier Dynamically

		Putting It All Together

		The Future Holds More of the Same

		A. The SSE Standard		W3C Candidate Recommendation 11 December 2012		Abstract

		Status of This Document		Candidate Recommendation Exit Criteria

		Table of Contents

		1 Introduction

		2 Conformance requirements		2.1 Dependencies

		3 Terminology

		4 The EventSource interface

		5 Processing model

		6 Parsing an event stream

		7 Interpreting an event stream

		8 Notes

		9 Connectionless push and other features

		10 Garbage collection

		11 IANA considerations		11.1 text/event-stream

		11.2 Last-Event-ID

		References

		Acknowledgements

		B. Refactor: JavaScript Globals, Objects,
 and Closures		Introducing the Example

		The Problem Is…

		JavaScript Objects and Constructors

		The Code with Objects

		JavaScript Closures

		Tea for Two, and Two for Tea

		C. PHP		Classes in PHP

		Random Functions

		Superglobals

		Date Handling

		Passwords

		Falling Asleep

		Index

		Colophon

		Copyright

OEBPS/figs/dpah_0302.png
oiezs [1a0016 |

OEBPS/figs/dpah_0602.png
W-0-0-0-8

OEBPS/figs/dpah_0801.png
Spc-sTam, deTense

spestat

apestat_ctime

=

[2pc.use_roquest_time.

[apc.user_entries hint

[apcaser st

E“EE“QEE
E“EE“QEE

(apewrite tock

APD

‘Advanced PHP Debugger (APD) Enabled

bcmath

e ==

bz2

[62ip2 support Ensbied

Stream Wrapper support [compress bz21/

[Stream Fitter support 7ip2 decompress, baip2 compress.

[62ip2 Version 105, 100ec2007

calendar

[Catendar support enabied

Core

b verson [Sastummmaz

Dirsctive Local Value. Master Vaiue

[auto_propend_file o vaive. no vaiue.

OEBPS/figs/dpah_0601.png

OEBPS/images/cover.png.jpg
Push Apps

with HTMLb SSE

PRAGMATIC SOLUTIONS FOR REAL-WORLD CLIENTS

Darren Cook

OEBPS/figs/dpah_0102.png
Client Server Actual Data
URL o I

L ——e
S———
H

»
»

Latency
Ajax Request |
NewData___—{«

T

OEBPS/figs/dpah_0103.png
Client Server Actual Data
URL . a
i ——e .
S
< New Data < @E@
p New Data p /Up-d o

OEBPS/figs/dpah_0403.png
94.041 1.30388 1.44424

USD/JPY EUR/USD AUD/GBP

Timestamp Bia | ask Timestamp Bia || ask Timestamp Bia || Ask
2014-01-08 06:36110.626 || 94.041 || 94.051| [2014-01-08 06:36:12.127 || 1.30385[1.30398] [2014-01-08 06:36:11.867 || 144424 [1.4444a
2014-01.08 06:36:10.175 || 94.061 || 94.001] [2014-01.08 06:36:11.560 || 130365][130375] [2014-01-08 06:36:09.702 || 144615 || 144635
2014-01.08 06:36:07.158 || 94.223]| 94.233] [2014-01.08 06:36:11.125 || 1.30368] 130378] [2014-01.08 06:36:08.689 || 144457 || 144477
2014-01.08 06:36:03.411 || 94.272|| 94.282] [2014-01.08 06:36:09.311 || 1.30339][130345] [2014-01.08 06:36:06.513 || Laasrz || 1.as332
2014-01.08 06:36:00.887 || 94.426| 94.438] | 2014-01.08 06:36:08.962 | 130301][130311| [2014-01.08 06:36:05.667 || 1.aaas6 | 144476
2014-01.08 06:35:59.306 || 94.383| 94.393| [2014-01.08 06:36:08.208 || 1.30308|[130518] [2014-01-08 06:36:02.942 || 1.4a221 || 1.asza1
2014-01.08 06:35:58.604 || 94.440| 94.450| [2014-01-08 06:36:07.805 || 1.30240|[1.30250| [2014-01-08 06:36:01.479 || 1.43985 || 1.44009
2014-01-08 06:35:54.892 || 94.550|| 94.560| [2014-01-08 06:36:07.444 || 1.30231 | 1.30241| [2014-01-08 06:35:57.849 || 143680 | 1.43700
2014-01-08 06:35:54.228 || 94.591 || 94.601] [2014-01-08 06:36:06.768 || 1.30125|[1.30135] [2014-01-08 06:35:56.958 || 1.43697][143717

2014-01-08 06:36:

1.30236][1.30246 2014-01-08 06:35:56.518 |[1.43609][1.43620

OEBPS/figs/dpah_0402.png
USD/JPY EUR/USD AUD/GBP

94.550 1.30096 1.43697

USD/JPY EUR/USD AUD/G!

Timestamp Bid || Ask Timestamp Bid Ask Timestamp Bid Ask
2014-01-08 06:35:54.892 || 94.550 || 94.560 2014-01-08 06:35:56.018 |[1.30096 |[1.30106 2014-01-08 06:35:56.958 |[1.43697][1.43717
2014-01-08 06:35:54.228 || 94.591 || 94.601 2014-01-08 06:35:55.521 || 1.30036 |[1.30046 2014-01-08 06:35:56.518 |[1.43609][1.43620

2014-01-08 06:35:

5.192 || 1.30003][1.30013 2014-01-08 06:35:54.483 |[1.43463[1.43483

2014-01-08 06:35:53.910 |[1.30140[130150

2014-01-08 06:35:53.426 || 1.30002 [1.30102

2014-01-08 06:35:52.957 |[1.30006 |[1.30016

2014-01-08 06:35:

1.30006][1.30016

OEBPS/figs/dpah_0901.png
usoimr | conuso | —wnooe]
—————— I —————c————

5008 LN 07 UNS poge: TRApTSxNe CONVISNRRIDS
Base URL to connect to{httpi//example.comy/sse/listings
Push Method: | Auto-Detect (SSE or fallback) *

Use fx_server.auth.apache.php

Use fx_server.auth.php.php

Use fx_server.auth.noauth.php
Username: oreilly
Password: @00@

‘Submit these credentials to fx_server.auth.custom.php

USD/JPY EUR/USD AUD/GBP

OEBPS/figs/dpah_0401.png
USD/JPY EUR/USD AUD/GBP
[I I 1

USD/JPY EUR/USD AUD/GBP

Timestamp Timestamp Timestamp

OEBPS/figs/dpah_0301.png
Sleep for) Choose symbol |
awhile and timestamp
Sent to client

OEBPS/figs/dpah_0201.png
Initializing..

2014-01-08 15: 35:51
2014-01-08 15:35:52
2014-01-08 15:35:53
2014-01-08 15:35:54
2014-01-08 15:35:55

